/* * * Tests for upb_table. */ #include #include #include #include #include #include #include #include #include #include "tests/upb_test.h" #include "upb/table.int.h" #include "upb/port_def.inc" // Convenience interface for C++. We don't put this in upb itself because // the table is not exposed to users. namespace upb { template upb_value MakeUpbValue(T val); template T GetUpbValue(upb_value val); template upb_ctype_t GetUpbValueType(); #define FUNCS(name, type_t, enumval) \ template<> upb_value MakeUpbValue(type_t val) { return upb_value_ ## name(val); } \ template<> type_t GetUpbValue(upb_value val) { return upb_value_get ## name(val); } \ template<> upb_ctype_t GetUpbValueType() { return enumval; } FUNCS(int32, int32_t, UPB_CTYPE_INT32) FUNCS(int64, int64_t, UPB_CTYPE_INT64) FUNCS(uint32, uint32_t, UPB_CTYPE_UINT32) FUNCS(uint64, uint64_t, UPB_CTYPE_UINT64) FUNCS(bool, bool, UPB_CTYPE_BOOL) FUNCS(cstr, char*, UPB_CTYPE_CSTR) FUNCS(ptr, void*, UPB_CTYPE_PTR) FUNCS(constptr, const void*, UPB_CTYPE_CONSTPTR) FUNCS(fptr, upb_func*, UPB_CTYPE_FPTR) #undef FUNCS class IntTable { public: IntTable(upb_ctype_t value_type) { upb_inttable_init(&table_, value_type); } ~IntTable() { upb_inttable_uninit(&table_); } size_t count() { return upb_inttable_count(&table_); } bool Insert(uintptr_t key, upb_value val) { return upb_inttable_insert(&table_, key, val); } bool Replace(uintptr_t key, upb_value val) { return upb_inttable_replace(&table_, key, val); } std::pair Remove(uintptr_t key) { std::pair ret; ret.first = upb_inttable_remove(&table_, key, &ret.second); return ret; } std::pair Lookup(uintptr_t key) const { std::pair ret; ret.first = upb_inttable_lookup(&table_, key, &ret.second); return ret; } std::pair Lookup32(uint32_t key) const { std::pair ret; ret.first = upb_inttable_lookup32(&table_, key, &ret.second); return ret; } void Compact() { upb_inttable_compact(&table_); } class iterator : public std::iterator > { public: explicit iterator(IntTable* table) { upb_inttable_begin(&iter_, &table->table_); } static iterator end(IntTable* table) { iterator iter(table); upb_inttable_iter_setdone(&iter.iter_); return iter; } void operator++() { return upb_inttable_next(&iter_); } std::pair operator*() const { std::pair ret; ret.first = upb_inttable_iter_key(&iter_); ret.second = upb_inttable_iter_value(&iter_); return ret; } bool operator==(const iterator& other) const { return upb_inttable_iter_isequal(&iter_, &other.iter_); } bool operator!=(const iterator& other) const { return !(*this == other); } private: upb_inttable_iter iter_; }; upb_inttable table_; }; class StrTable { public: StrTable(upb_ctype_t value_type) { upb_strtable_init(&table_, value_type); } ~StrTable() { upb_strtable_uninit(&table_); } size_t count() { return upb_strtable_count(&table_); } bool Insert(const std::string& key, upb_value val) { return upb_strtable_insert2(&table_, key.c_str(), key.size(), val); } std::pair Remove(const std::string& key) { std::pair ret; ret.first = upb_strtable_remove2(&table_, key.c_str(), key.size(), &ret.second); return ret; } std::pair Lookup(const std::string& key) const { std::pair ret; ret.first = upb_strtable_lookup2(&table_, key.c_str(), key.size(), &ret.second); return ret; } void Resize(size_t size_lg2) { upb_strtable_resize(&table_, size_lg2, &upb_alloc_global); } class iterator : public std::iterator > { public: explicit iterator(StrTable* table) { upb_strtable_begin(&iter_, &table->table_); } static iterator end(StrTable* table) { iterator iter(table); upb_strtable_iter_setdone(&iter.iter_); return iter; } void operator++() { return upb_strtable_next(&iter_); } std::pair operator*() const { std::pair ret; upb_strview view = upb_strtable_iter_key(&iter_); ret.first.assign(view.data, view.size); ret.second = upb_strtable_iter_value(&iter_); return ret; } bool operator==(const iterator& other) const { return upb_strtable_iter_isequal(&iter_, &other.iter_); } bool operator!=(const iterator& other) const { return !(*this == other); } private: upb_strtable_iter iter_; }; upb_strtable table_; }; template class TypedStrTable { public: TypedStrTable() : table_(GetUpbValueType()) {} size_t count() { return table_.count(); } bool Insert(const std::string &key, T val) { return table_.Insert(key, MakeUpbValue(val)); } std::pair Remove(const std::string& key) { std::pair found = table_.Remove(key); std::pair ret; ret.first = found.first; if (ret.first) { ret.second = GetUpbValue(found.second); } return ret; } std::pair Lookup(const std::string& key) const { std::pair found = table_.Lookup(key); std::pair ret; ret.first = found.first; if (ret.first) { ret.second = GetUpbValue(found.second); } return ret; } void Resize(size_t size_lg2) { table_.Resize(size_lg2); } class iterator : public std::iterator > { public: explicit iterator(TypedStrTable* table) : iter_(&table->table_) {} static iterator end(TypedStrTable* table) { iterator iter(table); iter.iter_ = StrTable::iterator::end(&table->table_); return iter; } void operator++() { ++iter_; } std::pair operator*() const { std::pair val = *iter_; std::pair ret; ret.first = val.first; ret.second = GetUpbValue(val.second); return ret; } bool operator==(const iterator& other) const { return iter_ == other.iter_; } bool operator!=(const iterator& other) const { return iter_ != other.iter_; } private: StrTable::iterator iter_; }; iterator begin() { return iterator(this); } iterator end() { return iterator::end(this); } StrTable table_; }; template class TypedIntTable { public: TypedIntTable() : table_(GetUpbValueType()) {} size_t count() { return table_.count(); } bool Insert(uintptr_t key, T val) { return table_.Insert(key, MakeUpbValue(val)); } bool Replace(uintptr_t key, T val) { return table_.Replace(key, MakeUpbValue(val)); } std::pair Remove(uintptr_t key) { std::pair found = table_.Remove(key); std::pair ret; ret.first = found.first; if (ret.first) { ret.second = GetUpbValue(found.second); } return ret; } std::pair Lookup(uintptr_t key) const { std::pair found = table_.Lookup(key); std::pair ret; ret.first = found.first; if (ret.first) { ret.second = GetUpbValue(found.second); } return ret; } void Compact() { table_.Compact(); } class iterator : public std::iterator > { public: explicit iterator(TypedIntTable* table) : iter_(&table->table_) {} static iterator end(TypedIntTable* table) { return IntTable::iterator::end(&table->table_); } void operator++() { ++iter_; } std::pair operator*() const { std::pair val = *iter_; std::pair ret; ret.first = val.first; ret.second = GetUpbValue(val.second); return ret; } bool operator==(const iterator& other) const { return iter_ == other.iter_; } bool operator!=(const iterator& other) const { return iter_ != other.iter_; } private: IntTable::iterator iter_; }; iterator begin() { return iterator(this); } iterator end() { return iterator::end(this); } IntTable table_; }; } bool benchmark = false; #define CPU_TIME_PER_TEST 0.5 using std::vector; double get_usertime() { struct rusage usage; getrusage(RUSAGE_SELF, &usage); return usage.ru_utime.tv_sec + (usage.ru_utime.tv_usec/1000000.0); } /* num_entries must be a power of 2. */ void test_strtable(const vector& keys, uint32_t num_to_insert) { /* Initialize structures. */ std::map m; typedef upb::TypedStrTable Table; Table table; std::set all; for(size_t i = 0; i < num_to_insert; i++) { const std::string& key = keys[i]; all.insert(key); table.Insert(key, key[0]); m[key] = key[0]; } /* Test correctness. */ for(uint32_t i = 0; i < keys.size(); i++) { const std::string& key = keys[i]; std::pair found = table.Lookup(key); if(m.find(key) != m.end()) { /* Assume map implementation is correct. */ ASSERT(found.first); ASSERT(found.second == key[0]); ASSERT(m[key] == key[0]); } else { ASSERT(!found.first); } } for (Table::iterator it = table.begin(); it != table.end(); ++it) { std::set::iterator i = all.find((*it).first); ASSERT(i != all.end()); all.erase(i); } ASSERT(all.empty()); // Test iteration with resizes. for (int i = 0; i < 10; i++) { for (Table::iterator it = table.begin(); it != table.end(); ++it) { // Even if we invalidate the iterator it should only return real elements. ASSERT((*it).second == m[(*it).first]); // Force a resize even though the size isn't changing. // Also forces the table size to grow so some new buckets end up empty. int new_lg2 = table.table_.table_.t.size_lg2 + 1; // Don't use more than 64k tables, to avoid exhausting memory. new_lg2 = UPB_MIN(new_lg2, 16); table.Resize(new_lg2); } } } /* num_entries must be a power of 2. */ void test_inttable(int32_t *keys, uint16_t num_entries, const char *desc) { /* Initialize structures. */ typedef upb::TypedIntTable Table; Table table; uint32_t largest_key = 0; std::map m; std::unordered_map hm; for(size_t i = 0; i < num_entries; i++) { int32_t key = keys[i]; largest_key = UPB_MAX((int32_t)largest_key, key); table.Insert(key, key * 2); m[key] = key*2; hm[key] = key*2; } /* Test correctness. */ for(uint32_t i = 0; i <= largest_key; i++) { std::pair found = table.Lookup(i); if(m.find(i) != m.end()) { /* Assume map implementation is correct. */ ASSERT(found.first); ASSERT(found.second == i*2); ASSERT(m[i] == i*2); ASSERT(hm[i] == i*2); } else { ASSERT(!found.first); } } for(uint16_t i = 0; i < num_entries; i += 2) { std::pair found = table.Remove(keys[i]); ASSERT(found.first == (m.erase(keys[i]) == 1)); if (found.first) ASSERT(found.second == (uint32_t)keys[i] * 2); hm.erase(keys[i]); m.erase(keys[i]); } ASSERT(table.count() == hm.size()); /* Test correctness. */ for(uint32_t i = 0; i <= largest_key; i++) { std::pair found = table.Lookup(i); if(m.find(i) != m.end()) { /* Assume map implementation is correct. */ ASSERT(found.first); ASSERT(found.second == i*2); ASSERT(m[i] == i*2); ASSERT(hm[i] == i*2); } else { ASSERT(!found.first); } } // Test replace. for(uint32_t i = 0; i <= largest_key; i++) { bool replaced = table.Replace(i, i*3); if(m.find(i) != m.end()) { /* Assume map implementation is correct. */ ASSERT(replaced); m[i] = i * 3; hm[i] = i * 3; } else { ASSERT(!replaced); } } // Compact and test correctness again. table.Compact(); for(uint32_t i = 0; i <= largest_key; i++) { std::pair found = table.Lookup(i); if(m.find(i) != m.end()) { /* Assume map implementation is correct. */ ASSERT(found.first); ASSERT(found.second == i*3); ASSERT(m[i] == i*3); ASSERT(hm[i] == i*3); } else { ASSERT(!found.first); } } if(!benchmark) { return; } printf("%s\n", desc); /* Test performance. We only test lookups for keys that are known to exist. */ uint16_t *rand_order = new uint16_t[num_entries]; for(uint16_t i = 0; i < num_entries; i++) { rand_order[i] = i; } for(uint16_t i = num_entries - 1; i >= 1; i--) { uint16_t rand_i = (random() / (double)RAND_MAX) * i; ASSERT(rand_i <= i); uint16_t tmp = rand_order[rand_i]; rand_order[rand_i] = rand_order[i]; rand_order[i] = tmp; } uintptr_t x = 0; const int mask = num_entries - 1; int time_mask = 0xffff; printf("upb_inttable(seq): "); fflush(stdout); double before = get_usertime(); unsigned int i; #define MAYBE_BREAK \ if ((i & time_mask) == 0 && (get_usertime() - before) > CPU_TIME_PER_TEST) \ break; for(i = 0; true; i++) { MAYBE_BREAK; int32_t key = keys[i & mask]; upb_value v; bool ok = upb_inttable_lookup32(&table.table_.table_, key, &v); x += (uintptr_t)ok; } double total = get_usertime() - before; printf("%ld/s\n", (long)(i/total)); double upb_seq_i = i / 100; // For later percentage calcuation. printf("upb_inttable(rand): "); fflush(stdout); before = get_usertime(); for(i = 0; true; i++) { MAYBE_BREAK; int32_t key = keys[rand_order[i & mask]]; upb_value v; bool ok = upb_inttable_lookup32(&table.table_.table_, key, &v); x += (uintptr_t)ok; } total = get_usertime() - before; printf("%ld/s\n", (long)(i/total)); double upb_rand_i = i / 100; // For later percentage calculation. printf("std::map(seq): "); fflush(stdout); before = get_usertime(); for(i = 0; true; i++) { MAYBE_BREAK; int32_t key = keys[i & mask]; x += m[key]; } total = get_usertime() - before; printf("%ld/s (%0.1f%% of upb)\n", (long)(i/total), i / upb_seq_i); printf("std::map(rand): "); fflush(stdout); before = get_usertime(); for(i = 0; true; i++) { MAYBE_BREAK; int32_t key = keys[rand_order[i & mask]]; x += m[key]; } total = get_usertime() - before; printf("%ld/s (%0.1f%% of upb)\n", (long)(i/total), i / upb_rand_i); printf("std::unordered_map(seq): "); fflush(stdout); before = get_usertime(); for(i = 0; true; i++) { MAYBE_BREAK; int32_t key = keys[rand_order[i & mask]]; x += hm[key]; } total = get_usertime() - before; printf("%ld/s (%0.1f%% of upb)\n", (long)(i/total), i / upb_seq_i); printf("std::unordered_map(rand): "); fflush(stdout); before = get_usertime(); for(i = 0; true; i++) { MAYBE_BREAK; int32_t key = keys[rand_order[i & mask]]; x += hm[key]; } total = get_usertime() - before; if (x == INT_MAX) abort(); printf("%ld/s (%0.1f%% of upb)\n\n", (long)(i/total), i / upb_rand_i); delete[] rand_order; } /* * This test can't pass right now because the table can't store a value of * (uint64_t)-1. */ void test_int64_max_value() { /* typedef upb::TypedIntTable Table; Table table; uintptr_t uint64_max = (uint64_t)-1; table.Insert(1, uint64_max); std::pair found = table.Lookup(1); ASSERT(found.first); ASSERT(found.second == uint64_max); */ } int32_t *get_contiguous_keys(int32_t num) { int32_t *buf = new int32_t[num]; for(int32_t i = 0; i < num; i++) buf[i] = i; return buf; } void test_delete() { upb_inttable t; upb_inttable_init(&t, UPB_CTYPE_BOOL); upb_inttable_insert(&t, 0, upb_value_bool(true)); upb_inttable_insert(&t, 2, upb_value_bool(true)); upb_inttable_insert(&t, 4, upb_value_bool(true)); upb_inttable_compact(&t); upb_inttable_remove(&t, 0, NULL); upb_inttable_remove(&t, 2, NULL); upb_inttable_remove(&t, 4, NULL); upb_inttable_iter iter; for (upb_inttable_begin(&iter, &t); !upb_inttable_done(&iter); upb_inttable_next(&iter)) { ASSERT(false); } upb_inttable_uninit(&t); } void test_init() { for (int i = 0; i < 2048; i++) { /* Tests that the size calculations in init() (lg2 size for target load) * work for all expected sizes. */ upb_strtable t; upb_strtable_init2(&t, UPB_CTYPE_BOOL, i, &upb_alloc_global); upb_strtable_uninit(&t); } } extern "C" { int run_tests(int argc, char *argv[]) { for (int i = 1; i < argc; i++) { if (strcmp(argv[i], "benchmark") == 0) benchmark = true; } vector keys; keys.push_back("google.protobuf.FileDescriptorSet"); keys.push_back("google.protobuf.FileDescriptorProto"); keys.push_back("google.protobuf.DescriptorProto"); keys.push_back("google.protobuf.DescriptorProto.ExtensionRange"); keys.push_back("google.protobuf.FieldDescriptorProto"); keys.push_back("google.protobuf.EnumDescriptorProto"); keys.push_back("google.protobuf.EnumValueDescriptorProto"); keys.push_back("google.protobuf.ServiceDescriptorProto"); keys.push_back("google.protobuf.MethodDescriptorProto"); keys.push_back("google.protobuf.FileOptions"); keys.push_back("google.protobuf.MessageOptions"); keys.push_back("google.protobuf.FieldOptions"); keys.push_back("google.protobuf.EnumOptions"); keys.push_back("google.protobuf.EnumValueOptions"); keys.push_back("google.protobuf.ServiceOptions"); keys.push_back("google.protobuf.MethodOptions"); keys.push_back("google.protobuf.UninterpretedOption"); keys.push_back("google.protobuf.UninterpretedOption.NamePart"); for (int i = 0; i < 10; i++) { test_strtable(keys, 18); } int32_t *keys1 = get_contiguous_keys(8); test_inttable(keys1, 8, "Table size: 8, keys: 1-8 ===="); delete[] keys1; int32_t *keys2 = get_contiguous_keys(64); test_inttable(keys2, 64, "Table size: 64, keys: 1-64 ====\n"); delete[] keys2; int32_t *keys3 = get_contiguous_keys(512); test_inttable(keys3, 512, "Table size: 512, keys: 1-512 ====\n"); delete[] keys3; int32_t *keys4 = new int32_t[64]; for(int32_t i = 0; i < 64; i++) { if(i < 32) keys4[i] = i+1; else keys4[i] = 10101+i; } test_inttable(keys4, 64, "Table size: 64, keys: 1-32 and 10133-10164 ====\n"); delete[] keys4; test_delete(); test_int64_max_value(); return 0; } }