/* * Copyright 2016-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, size_t r); void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r); #if !defined(KECCAK1600_ASM) || !defined(SELFTEST) /* * Choose some sensible defaults */ #if !defined(KECCAK_REF) && !defined(KECCAK_1X) && !defined(KECCAK_1X_ALT) && \ !defined(KECCAK_2X) && !defined(KECCAK_INPLACE) # define KECCAK_2X /* default to KECCAK_2X variant */ #endif #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ (defined(__x86_64) && !defined(__BMI__)) || defined(_M_X64) || \ defined(__mips) || defined(__riscv) || defined(__s390__) || \ defined(__EMSCRIPTEN__) /* * These don't have "and with complement" instruction, so minimize amount * of "not"-s. Implemented only in the [default] KECCAK_2X variant. */ # define KECCAK_COMPLEMENTING_TRANSFORM #endif #if defined(__x86_64__) || defined(__aarch64__) || \ defined(__mips64) || defined(__ia64) || \ (defined(__VMS) && !defined(__vax)) /* * These are available even in ILP32 flavours, but even then they are * capable of performing 64-bit operations as efficiently as in *P64. * Since it's not given that we can use sizeof(void *), just shunt it. */ # define BIT_INTERLEAVE (0) #else # define BIT_INTERLEAVE (sizeof(void *) < 8) #endif #define ROL32(a, offset) (((a) << (offset)) | ((a) >> ((32 - (offset)) & 31))) static uint64_t ROL64(uint64_t val, int offset) { if (offset == 0) { return val; } else if (!BIT_INTERLEAVE) { return (val << offset) | (val >> (64-offset)); } else { uint32_t hi = (uint32_t)(val >> 32), lo = (uint32_t)val; if (offset & 1) { uint32_t tmp = hi; offset >>= 1; hi = ROL32(lo, offset); lo = ROL32(tmp, offset + 1); } else { offset >>= 1; lo = ROL32(lo, offset); hi = ROL32(hi, offset); } return ((uint64_t)hi << 32) | lo; } } static const unsigned char rhotates[5][5] = { { 0, 1, 62, 28, 27 }, { 36, 44, 6, 55, 20 }, { 3, 10, 43, 25, 39 }, { 41, 45, 15, 21, 8 }, { 18, 2, 61, 56, 14 } }; static const uint64_t iotas[] = { BIT_INTERLEAVE ? 0x0000000000000001ULL : 0x0000000000000001ULL, BIT_INTERLEAVE ? 0x0000008900000000ULL : 0x0000000000008082ULL, BIT_INTERLEAVE ? 0x8000008b00000000ULL : 0x800000000000808aULL, BIT_INTERLEAVE ? 0x8000808000000000ULL : 0x8000000080008000ULL, BIT_INTERLEAVE ? 0x0000008b00000001ULL : 0x000000000000808bULL, BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, BIT_INTERLEAVE ? 0x8000008200000001ULL : 0x8000000000008009ULL, BIT_INTERLEAVE ? 0x0000000b00000000ULL : 0x000000000000008aULL, BIT_INTERLEAVE ? 0x0000000a00000000ULL : 0x0000000000000088ULL, BIT_INTERLEAVE ? 0x0000808200000001ULL : 0x0000000080008009ULL, BIT_INTERLEAVE ? 0x0000800300000000ULL : 0x000000008000000aULL, BIT_INTERLEAVE ? 0x0000808b00000001ULL : 0x000000008000808bULL, BIT_INTERLEAVE ? 0x8000000b00000001ULL : 0x800000000000008bULL, BIT_INTERLEAVE ? 0x8000008a00000001ULL : 0x8000000000008089ULL, BIT_INTERLEAVE ? 0x8000008100000001ULL : 0x8000000000008003ULL, BIT_INTERLEAVE ? 0x8000008100000000ULL : 0x8000000000008002ULL, BIT_INTERLEAVE ? 0x8000000800000000ULL : 0x8000000000000080ULL, BIT_INTERLEAVE ? 0x0000008300000000ULL : 0x000000000000800aULL, BIT_INTERLEAVE ? 0x8000800300000000ULL : 0x800000008000000aULL, BIT_INTERLEAVE ? 0x8000808800000001ULL : 0x8000000080008081ULL, BIT_INTERLEAVE ? 0x8000008800000000ULL : 0x8000000000008080ULL, BIT_INTERLEAVE ? 0x0000800000000001ULL : 0x0000000080000001ULL, BIT_INTERLEAVE ? 0x8000808200000000ULL : 0x8000000080008008ULL }; #if defined(KECCAK_REF) /* * This is straightforward or "maximum clarity" implementation aiming * to resemble section 3.2 of the FIPS PUB 202 "SHA-3 Standard: * Permutation-Based Hash and Extendible-Output Functions" as much as * possible. With one caveat. Because of the way C stores matrices, * references to A[x,y] in the specification are presented as A[y][x]. * Implementation unrolls inner x-loops so that modulo 5 operations are * explicitly pre-computed. */ static void Theta(uint64_t A[5][5]) { uint64_t C[5], D[5]; size_t y; C[0] = A[0][0]; C[1] = A[0][1]; C[2] = A[0][2]; C[3] = A[0][3]; C[4] = A[0][4]; for (y = 1; y < 5; y++) { C[0] ^= A[y][0]; C[1] ^= A[y][1]; C[2] ^= A[y][2]; C[3] ^= A[y][3]; C[4] ^= A[y][4]; } D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; for (y = 0; y < 5; y++) { A[y][0] ^= D[0]; A[y][1] ^= D[1]; A[y][2] ^= D[2]; A[y][3] ^= D[3]; A[y][4] ^= D[4]; } } static void Rho(uint64_t A[5][5]) { size_t y; for (y = 0; y < 5; y++) { A[y][0] = ROL64(A[y][0], rhotates[y][0]); A[y][1] = ROL64(A[y][1], rhotates[y][1]); A[y][2] = ROL64(A[y][2], rhotates[y][2]); A[y][3] = ROL64(A[y][3], rhotates[y][3]); A[y][4] = ROL64(A[y][4], rhotates[y][4]); } } static void Pi(uint64_t A[5][5]) { uint64_t T[5][5]; /* * T = A * A[y][x] = T[x][(3*y+x)%5] */ memcpy(T, A, sizeof(T)); A[0][0] = T[0][0]; A[0][1] = T[1][1]; A[0][2] = T[2][2]; A[0][3] = T[3][3]; A[0][4] = T[4][4]; A[1][0] = T[0][3]; A[1][1] = T[1][4]; A[1][2] = T[2][0]; A[1][3] = T[3][1]; A[1][4] = T[4][2]; A[2][0] = T[0][1]; A[2][1] = T[1][2]; A[2][2] = T[2][3]; A[2][3] = T[3][4]; A[2][4] = T[4][0]; A[3][0] = T[0][4]; A[3][1] = T[1][0]; A[3][2] = T[2][1]; A[3][3] = T[3][2]; A[3][4] = T[4][3]; A[4][0] = T[0][2]; A[4][1] = T[1][3]; A[4][2] = T[2][4]; A[4][3] = T[3][0]; A[4][4] = T[4][1]; } static void Chi(uint64_t A[5][5]) { uint64_t C[5]; size_t y; for (y = 0; y < 5; y++) { C[0] = A[y][0] ^ (~A[y][1] & A[y][2]); C[1] = A[y][1] ^ (~A[y][2] & A[y][3]); C[2] = A[y][2] ^ (~A[y][3] & A[y][4]); C[3] = A[y][3] ^ (~A[y][4] & A[y][0]); C[4] = A[y][4] ^ (~A[y][0] & A[y][1]); A[y][0] = C[0]; A[y][1] = C[1]; A[y][2] = C[2]; A[y][3] = C[3]; A[y][4] = C[4]; } } static void Iota(uint64_t A[5][5], size_t i) { assert(i < (sizeof(iotas) / sizeof(iotas[0]))); A[0][0] ^= iotas[i]; } static void KeccakF1600(uint64_t A[5][5]) { size_t i; for (i = 0; i < 24; i++) { Theta(A); Rho(A); Pi(A); Chi(A); Iota(A, i); } } #elif defined(KECCAK_1X) /* * This implementation is optimization of above code featuring unroll * of even y-loops, their fusion and code motion. It also minimizes * temporary storage. Compiler would normally do all these things for * you, purpose of manual optimization is to provide "unobscured" * reference for assembly implementation [in case this approach is * chosen for implementation on some platform]. In the nutshell it's * equivalent of "plane-per-plane processing" approach discussed in * section 2.4 of "Keccak implementation overview". */ static void Round(uint64_t A[5][5], size_t i) { uint64_t C[5], E[2]; /* registers */ uint64_t D[5], T[2][5]; /* memory */ assert(i < (sizeof(iotas) / sizeof(iotas[0]))); C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; #if defined(__arm__) D[1] = E[0] = ROL64(C[2], 1) ^ C[0]; D[4] = E[1] = ROL64(C[0], 1) ^ C[3]; D[0] = C[0] = ROL64(C[1], 1) ^ C[4]; D[2] = C[1] = ROL64(C[3], 1) ^ C[1]; D[3] = C[2] = ROL64(C[4], 1) ^ C[2]; T[0][0] = A[3][0] ^ C[0]; /* borrow T[0][0] */ T[0][1] = A[0][1] ^ E[0]; /* D[1] */ T[0][2] = A[0][2] ^ C[1]; /* D[2] */ T[0][3] = A[0][3] ^ C[2]; /* D[3] */ T[0][4] = A[0][4] ^ E[1]; /* D[4] */ C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */ C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */ C[0] = A[0][0] ^ C[0]; /* rotate by 0 */ /* D[0] */ C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */ C[1] = ROL64(A[1][1] ^ E[0], rhotates[1][1]); /* D[1] */ #else D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; T[0][0] = A[3][0] ^ D[0]; /* borrow T[0][0] */ T[0][1] = A[0][1] ^ D[1]; T[0][2] = A[0][2] ^ D[2]; T[0][3] = A[0][3] ^ D[3]; T[0][4] = A[0][4] ^ D[4]; C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); #endif A[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; A[0][1] = C[1] ^ (~C[2] & C[3]); A[0][2] = C[2] ^ (~C[3] & C[4]); A[0][3] = C[3] ^ (~C[4] & C[0]); A[0][4] = C[4] ^ (~C[0] & C[1]); T[1][0] = A[1][0] ^ (C[3] = D[0]); T[1][1] = A[2][1] ^ (C[4] = D[1]); /* borrow T[1][1] */ T[1][2] = A[1][2] ^ (E[0] = D[2]); T[1][3] = A[1][3] ^ (E[1] = D[3]); T[1][4] = A[2][4] ^ (C[2] = D[4]); /* borrow T[1][4] */ C[0] = ROL64(T[0][3], rhotates[0][3]); C[1] = ROL64(A[1][4] ^ C[2], rhotates[1][4]); /* D[4] */ C[2] = ROL64(A[2][0] ^ C[3], rhotates[2][0]); /* D[0] */ C[3] = ROL64(A[3][1] ^ C[4], rhotates[3][1]); /* D[1] */ C[4] = ROL64(A[4][2] ^ E[0], rhotates[4][2]); /* D[2] */ A[1][0] = C[0] ^ (~C[1] & C[2]); A[1][1] = C[1] ^ (~C[2] & C[3]); A[1][2] = C[2] ^ (~C[3] & C[4]); A[1][3] = C[3] ^ (~C[4] & C[0]); A[1][4] = C[4] ^ (~C[0] & C[1]); C[0] = ROL64(T[0][1], rhotates[0][1]); C[1] = ROL64(T[1][2], rhotates[1][2]); C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); A[2][0] = C[0] ^ (~C[1] & C[2]); A[2][1] = C[1] ^ (~C[2] & C[3]); A[2][2] = C[2] ^ (~C[3] & C[4]); A[2][3] = C[3] ^ (~C[4] & C[0]); A[2][4] = C[4] ^ (~C[0] & C[1]); C[0] = ROL64(T[0][4], rhotates[0][4]); C[1] = ROL64(T[1][0], rhotates[1][0]); C[2] = ROL64(T[1][1], rhotates[2][1]); /* originally A[2][1] */ C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); A[3][0] = C[0] ^ (~C[1] & C[2]); A[3][1] = C[1] ^ (~C[2] & C[3]); A[3][2] = C[2] ^ (~C[3] & C[4]); A[3][3] = C[3] ^ (~C[4] & C[0]); A[3][4] = C[4] ^ (~C[0] & C[1]); C[0] = ROL64(T[0][2], rhotates[0][2]); C[1] = ROL64(T[1][3], rhotates[1][3]); C[2] = ROL64(T[1][4], rhotates[2][4]); /* originally A[2][4] */ C[3] = ROL64(T[0][0], rhotates[3][0]); /* originally A[3][0] */ C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); A[4][0] = C[0] ^ (~C[1] & C[2]); A[4][1] = C[1] ^ (~C[2] & C[3]); A[4][2] = C[2] ^ (~C[3] & C[4]); A[4][3] = C[3] ^ (~C[4] & C[0]); A[4][4] = C[4] ^ (~C[0] & C[1]); } static void KeccakF1600(uint64_t A[5][5]) { size_t i; for (i = 0; i < 24; i++) { Round(A, i); } } #elif defined(KECCAK_1X_ALT) /* * This is variant of above KECCAK_1X that reduces requirement for * temporary storage even further, but at cost of more updates to A[][]. * It's less suitable if A[][] is memory bound, but better if it's * register bound. */ static void Round(uint64_t A[5][5], size_t i) { uint64_t C[5], D[5]; assert(i < (sizeof(iotas) / sizeof(iotas[0]))); C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; D[1] = C[0] ^ ROL64(C[2], 1); D[2] = C[1] ^ ROL64(C[3], 1); D[3] = C[2] ^= ROL64(C[4], 1); D[4] = C[3] ^= ROL64(C[0], 1); D[0] = C[4] ^= ROL64(C[1], 1); A[0][1] ^= D[1]; A[1][1] ^= D[1]; A[2][1] ^= D[1]; A[3][1] ^= D[1]; A[4][1] ^= D[1]; A[0][2] ^= D[2]; A[1][2] ^= D[2]; A[2][2] ^= D[2]; A[3][2] ^= D[2]; A[4][2] ^= D[2]; A[0][3] ^= C[2]; A[1][3] ^= C[2]; A[2][3] ^= C[2]; A[3][3] ^= C[2]; A[4][3] ^= C[2]; A[0][4] ^= C[3]; A[1][4] ^= C[3]; A[2][4] ^= C[3]; A[3][4] ^= C[3]; A[4][4] ^= C[3]; A[0][0] ^= C[4]; A[1][0] ^= C[4]; A[2][0] ^= C[4]; A[3][0] ^= C[4]; A[4][0] ^= C[4]; C[1] = A[0][1]; C[2] = A[0][2]; C[3] = A[0][3]; C[4] = A[0][4]; A[0][1] = ROL64(A[1][1], rhotates[1][1]); A[0][2] = ROL64(A[2][2], rhotates[2][2]); A[0][3] = ROL64(A[3][3], rhotates[3][3]); A[0][4] = ROL64(A[4][4], rhotates[4][4]); A[1][1] = ROL64(A[1][4], rhotates[1][4]); A[2][2] = ROL64(A[2][3], rhotates[2][3]); A[3][3] = ROL64(A[3][2], rhotates[3][2]); A[4][4] = ROL64(A[4][1], rhotates[4][1]); A[1][4] = ROL64(A[4][2], rhotates[4][2]); A[2][3] = ROL64(A[3][4], rhotates[3][4]); A[3][2] = ROL64(A[2][1], rhotates[2][1]); A[4][1] = ROL64(A[1][3], rhotates[1][3]); A[4][2] = ROL64(A[2][4], rhotates[2][4]); A[3][4] = ROL64(A[4][3], rhotates[4][3]); A[2][1] = ROL64(A[1][2], rhotates[1][2]); A[1][3] = ROL64(A[3][1], rhotates[3][1]); A[2][4] = ROL64(A[4][0], rhotates[4][0]); A[4][3] = ROL64(A[3][0], rhotates[3][0]); A[1][2] = ROL64(A[2][0], rhotates[2][0]); A[3][1] = ROL64(A[1][0], rhotates[1][0]); A[1][0] = ROL64(C[3], rhotates[0][3]); A[2][0] = ROL64(C[1], rhotates[0][1]); A[3][0] = ROL64(C[4], rhotates[0][4]); A[4][0] = ROL64(C[2], rhotates[0][2]); C[0] = A[0][0]; C[1] = A[1][0]; D[0] = A[0][1]; D[1] = A[1][1]; A[0][0] ^= (~A[0][1] & A[0][2]); A[1][0] ^= (~A[1][1] & A[1][2]); A[0][1] ^= (~A[0][2] & A[0][3]); A[1][1] ^= (~A[1][2] & A[1][3]); A[0][2] ^= (~A[0][3] & A[0][4]); A[1][2] ^= (~A[1][3] & A[1][4]); A[0][3] ^= (~A[0][4] & C[0]); A[1][3] ^= (~A[1][4] & C[1]); A[0][4] ^= (~C[0] & D[0]); A[1][4] ^= (~C[1] & D[1]); C[2] = A[2][0]; C[3] = A[3][0]; D[2] = A[2][1]; D[3] = A[3][1]; A[2][0] ^= (~A[2][1] & A[2][2]); A[3][0] ^= (~A[3][1] & A[3][2]); A[2][1] ^= (~A[2][2] & A[2][3]); A[3][1] ^= (~A[3][2] & A[3][3]); A[2][2] ^= (~A[2][3] & A[2][4]); A[3][2] ^= (~A[3][3] & A[3][4]); A[2][3] ^= (~A[2][4] & C[2]); A[3][3] ^= (~A[3][4] & C[3]); A[2][4] ^= (~C[2] & D[2]); A[3][4] ^= (~C[3] & D[3]); C[4] = A[4][0]; D[4] = A[4][1]; A[4][0] ^= (~A[4][1] & A[4][2]); A[4][1] ^= (~A[4][2] & A[4][3]); A[4][2] ^= (~A[4][3] & A[4][4]); A[4][3] ^= (~A[4][4] & C[4]); A[4][4] ^= (~C[4] & D[4]); A[0][0] ^= iotas[i]; } static void KeccakF1600(uint64_t A[5][5]) { size_t i; for (i = 0; i < 24; i++) { Round(A, i); } } #elif defined(KECCAK_2X) /* * This implementation is variant of KECCAK_1X above with outer-most * round loop unrolled twice. This allows to take temporary storage * out of round procedure and simplify references to it by alternating * it with actual data (see round loop below). Originally it was meant * rather as reference for an assembly implementation, but it seems to * play best with compilers [as well as provide best instruction per * processed byte ratio at minimal round unroll factor]... */ static void Round(uint64_t R[5][5], uint64_t A[5][5], size_t i) { uint64_t C[5], D[5]; assert(i < (sizeof(iotas) / sizeof(iotas[0]))); C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; C[0] = A[0][0] ^ D[0]; /* rotate by 0 */ C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); C[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); C[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); C[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); #ifdef KECCAK_COMPLEMENTING_TRANSFORM R[0][0] = C[0] ^ ( C[1] | C[2]) ^ iotas[i]; R[0][1] = C[1] ^ (~C[2] | C[3]); R[0][2] = C[2] ^ ( C[3] & C[4]); R[0][3] = C[3] ^ ( C[4] | C[0]); R[0][4] = C[4] ^ ( C[0] & C[1]); #else R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; R[0][1] = C[1] ^ (~C[2] & C[3]); R[0][2] = C[2] ^ (~C[3] & C[4]); R[0][3] = C[3] ^ (~C[4] & C[0]); R[0][4] = C[4] ^ (~C[0] & C[1]); #endif C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); #ifdef KECCAK_COMPLEMENTING_TRANSFORM R[1][0] = C[0] ^ (C[1] | C[2]); R[1][1] = C[1] ^ (C[2] & C[3]); R[1][2] = C[2] ^ (C[3] | ~C[4]); R[1][3] = C[3] ^ (C[4] | C[0]); R[1][4] = C[4] ^ (C[0] & C[1]); #else R[1][0] = C[0] ^ (~C[1] & C[2]); R[1][1] = C[1] ^ (~C[2] & C[3]); R[1][2] = C[2] ^ (~C[3] & C[4]); R[1][3] = C[3] ^ (~C[4] & C[0]); R[1][4] = C[4] ^ (~C[0] & C[1]); #endif C[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); C[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); C[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); C[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); C[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); #ifdef KECCAK_COMPLEMENTING_TRANSFORM R[2][0] = C[0] ^ ( C[1] | C[2]); R[2][1] = C[1] ^ ( C[2] & C[3]); R[2][2] = C[2] ^ (~C[3] & C[4]); R[2][3] = ~C[3] ^ ( C[4] | C[0]); R[2][4] = C[4] ^ ( C[0] & C[1]); #else R[2][0] = C[0] ^ (~C[1] & C[2]); R[2][1] = C[1] ^ (~C[2] & C[3]); R[2][2] = C[2] ^ (~C[3] & C[4]); R[2][3] = C[3] ^ (~C[4] & C[0]); R[2][4] = C[4] ^ (~C[0] & C[1]); #endif C[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); C[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); C[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); C[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); C[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); #ifdef KECCAK_COMPLEMENTING_TRANSFORM R[3][0] = C[0] ^ ( C[1] & C[2]); R[3][1] = C[1] ^ ( C[2] | C[3]); R[3][2] = C[2] ^ (~C[3] | C[4]); R[3][3] = ~C[3] ^ ( C[4] & C[0]); R[3][4] = C[4] ^ ( C[0] | C[1]); #else R[3][0] = C[0] ^ (~C[1] & C[2]); R[3][1] = C[1] ^ (~C[2] & C[3]); R[3][2] = C[2] ^ (~C[3] & C[4]); R[3][3] = C[3] ^ (~C[4] & C[0]); R[3][4] = C[4] ^ (~C[0] & C[1]); #endif C[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); C[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); C[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); C[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); C[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); #ifdef KECCAK_COMPLEMENTING_TRANSFORM R[4][0] = C[0] ^ (~C[1] & C[2]); R[4][1] = ~C[1] ^ ( C[2] | C[3]); R[4][2] = C[2] ^ ( C[3] & C[4]); R[4][3] = C[3] ^ ( C[4] | C[0]); R[4][4] = C[4] ^ ( C[0] & C[1]); #else R[4][0] = C[0] ^ (~C[1] & C[2]); R[4][1] = C[1] ^ (~C[2] & C[3]); R[4][2] = C[2] ^ (~C[3] & C[4]); R[4][3] = C[3] ^ (~C[4] & C[0]); R[4][4] = C[4] ^ (~C[0] & C[1]); #endif } static void KeccakF1600(uint64_t A[5][5]) { uint64_t T[5][5]; size_t i; #ifdef KECCAK_COMPLEMENTING_TRANSFORM A[0][1] = ~A[0][1]; A[0][2] = ~A[0][2]; A[1][3] = ~A[1][3]; A[2][2] = ~A[2][2]; A[3][2] = ~A[3][2]; A[4][0] = ~A[4][0]; #endif for (i = 0; i < 24; i += 2) { Round(T, A, i); Round(A, T, i + 1); } #ifdef KECCAK_COMPLEMENTING_TRANSFORM A[0][1] = ~A[0][1]; A[0][2] = ~A[0][2]; A[1][3] = ~A[1][3]; A[2][2] = ~A[2][2]; A[3][2] = ~A[3][2]; A[4][0] = ~A[4][0]; #endif } #else /* define KECCAK_INPLACE to compile this code path */ /* * This implementation is KECCAK_1X from above combined 4 times with * a twist that allows to omit temporary storage and perform in-place * processing. It's discussed in section 2.5 of "Keccak implementation * overview". It's likely to be best suited for processors with large * register bank... On the other hand processor with large register * bank can as well use KECCAK_1X_ALT, it would be as fast but much * more compact... */ static void FourRounds(uint64_t A[5][5], size_t i) { uint64_t B[5], C[5], D[5]; assert(i <= (sizeof(iotas) / sizeof(iotas[0]) - 4)); /* Round 4*n */ C[0] = A[0][0] ^ A[1][0] ^ A[2][0] ^ A[3][0] ^ A[4][0]; C[1] = A[0][1] ^ A[1][1] ^ A[2][1] ^ A[3][1] ^ A[4][1]; C[2] = A[0][2] ^ A[1][2] ^ A[2][2] ^ A[3][2] ^ A[4][2]; C[3] = A[0][3] ^ A[1][3] ^ A[2][3] ^ A[3][3] ^ A[4][3]; C[4] = A[0][4] ^ A[1][4] ^ A[2][4] ^ A[3][4] ^ A[4][4]; D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ B[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); B[2] = ROL64(A[2][2] ^ D[2], rhotates[2][2]); B[3] = ROL64(A[3][3] ^ D[3], rhotates[3][3]); B[4] = ROL64(A[4][4] ^ D[4], rhotates[4][4]); C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i]; C[1] = A[1][1] = B[1] ^ (~B[2] & B[3]); C[2] = A[2][2] = B[2] ^ (~B[3] & B[4]); C[3] = A[3][3] = B[3] ^ (~B[4] & B[0]); C[4] = A[4][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); B[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); B[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); B[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[0][1] ^ D[1], rhotates[0][1]); B[1] = ROL64(A[1][2] ^ D[2], rhotates[1][2]); B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); B[3] = ROL64(A[3][4] ^ D[4], rhotates[3][4]); B[4] = ROL64(A[4][0] ^ D[0], rhotates[4][0]); C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[0][4] ^ D[4], rhotates[0][4]); B[1] = ROL64(A[1][0] ^ D[0], rhotates[1][0]); B[2] = ROL64(A[2][1] ^ D[1], rhotates[2][1]); B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); B[4] = ROL64(A[4][3] ^ D[3], rhotates[4][3]); C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[0][2] ^ D[2], rhotates[0][2]); B[1] = ROL64(A[1][3] ^ D[3], rhotates[1][3]); B[2] = ROL64(A[2][4] ^ D[4], rhotates[2][4]); B[3] = ROL64(A[3][0] ^ D[0], rhotates[3][0]); B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); /* Round 4*n+1 */ D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ B[1] = ROL64(A[3][1] ^ D[1], rhotates[1][1]); B[2] = ROL64(A[1][2] ^ D[2], rhotates[2][2]); B[3] = ROL64(A[4][3] ^ D[3], rhotates[3][3]); B[4] = ROL64(A[2][4] ^ D[4], rhotates[4][4]); C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 1]; C[1] = A[3][1] = B[1] ^ (~B[2] & B[3]); C[2] = A[1][2] = B[2] ^ (~B[3] & B[4]); C[3] = A[4][3] = B[3] ^ (~B[4] & B[0]); C[4] = A[2][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[3][3] ^ D[3], rhotates[0][3]); B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); B[2] = ROL64(A[4][0] ^ D[0], rhotates[2][0]); B[3] = ROL64(A[2][1] ^ D[1], rhotates[3][1]); B[4] = ROL64(A[0][2] ^ D[2], rhotates[4][2]); C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[2][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[1][1] ^ D[1], rhotates[0][1]); B[1] = ROL64(A[4][2] ^ D[2], rhotates[1][2]); B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); B[3] = ROL64(A[0][4] ^ D[4], rhotates[3][4]); B[4] = ROL64(A[3][0] ^ D[0], rhotates[4][0]); C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[4][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[4][4] ^ D[4], rhotates[0][4]); B[1] = ROL64(A[2][0] ^ D[0], rhotates[1][0]); B[2] = ROL64(A[0][1] ^ D[1], rhotates[2][1]); B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); B[4] = ROL64(A[1][3] ^ D[3], rhotates[4][3]); C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[1][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[2][2] ^ D[2], rhotates[0][2]); B[1] = ROL64(A[0][3] ^ D[3], rhotates[1][3]); B[2] = ROL64(A[3][4] ^ D[4], rhotates[2][4]); B[3] = ROL64(A[1][0] ^ D[0], rhotates[3][0]); B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[3][4] = B[4] ^ (~B[0] & B[1]); /* Round 4*n+2 */ D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ B[1] = ROL64(A[2][1] ^ D[1], rhotates[1][1]); B[2] = ROL64(A[4][2] ^ D[2], rhotates[2][2]); B[3] = ROL64(A[1][3] ^ D[3], rhotates[3][3]); B[4] = ROL64(A[3][4] ^ D[4], rhotates[4][4]); C[0] = A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 2]; C[1] = A[2][1] = B[1] ^ (~B[2] & B[3]); C[2] = A[4][2] = B[2] ^ (~B[3] & B[4]); C[3] = A[1][3] = B[3] ^ (~B[4] & B[0]); C[4] = A[3][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[4][3] ^ D[3], rhotates[0][3]); B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); B[2] = ROL64(A[3][0] ^ D[0], rhotates[2][0]); B[3] = ROL64(A[0][1] ^ D[1], rhotates[3][1]); B[4] = ROL64(A[2][2] ^ D[2], rhotates[4][2]); C[0] ^= A[3][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[0][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[2][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[4][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[1][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[3][1] ^ D[1], rhotates[0][1]); B[1] = ROL64(A[0][2] ^ D[2], rhotates[1][2]); B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); B[3] = ROL64(A[4][4] ^ D[4], rhotates[3][4]); B[4] = ROL64(A[1][0] ^ D[0], rhotates[4][0]); C[0] ^= A[1][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[3][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[0][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[2][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[4][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[2][4] ^ D[4], rhotates[0][4]); B[1] = ROL64(A[4][0] ^ D[0], rhotates[1][0]); B[2] = ROL64(A[1][1] ^ D[1], rhotates[2][1]); B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); B[4] = ROL64(A[0][3] ^ D[3], rhotates[4][3]); C[0] ^= A[4][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[1][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[3][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[0][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[2][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[1][2] ^ D[2], rhotates[0][2]); B[1] = ROL64(A[3][3] ^ D[3], rhotates[1][3]); B[2] = ROL64(A[0][4] ^ D[4], rhotates[2][4]); B[3] = ROL64(A[2][0] ^ D[0], rhotates[3][0]); B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); C[0] ^= A[2][0] = B[0] ^ (~B[1] & B[2]); C[1] ^= A[4][1] = B[1] ^ (~B[2] & B[3]); C[2] ^= A[1][2] = B[2] ^ (~B[3] & B[4]); C[3] ^= A[3][3] = B[3] ^ (~B[4] & B[0]); C[4] ^= A[0][4] = B[4] ^ (~B[0] & B[1]); /* Round 4*n+3 */ D[0] = ROL64(C[1], 1) ^ C[4]; D[1] = ROL64(C[2], 1) ^ C[0]; D[2] = ROL64(C[3], 1) ^ C[1]; D[3] = ROL64(C[4], 1) ^ C[2]; D[4] = ROL64(C[0], 1) ^ C[3]; B[0] = A[0][0] ^ D[0]; /* rotate by 0 */ B[1] = ROL64(A[0][1] ^ D[1], rhotates[1][1]); B[2] = ROL64(A[0][2] ^ D[2], rhotates[2][2]); B[3] = ROL64(A[0][3] ^ D[3], rhotates[3][3]); B[4] = ROL64(A[0][4] ^ D[4], rhotates[4][4]); /* C[0] = */ A[0][0] = B[0] ^ (~B[1] & B[2]) ^ iotas[i + 3]; /* C[1] = */ A[0][1] = B[1] ^ (~B[2] & B[3]); /* C[2] = */ A[0][2] = B[2] ^ (~B[3] & B[4]); /* C[3] = */ A[0][3] = B[3] ^ (~B[4] & B[0]); /* C[4] = */ A[0][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[1][3] ^ D[3], rhotates[0][3]); B[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); B[2] = ROL64(A[1][0] ^ D[0], rhotates[2][0]); B[3] = ROL64(A[1][1] ^ D[1], rhotates[3][1]); B[4] = ROL64(A[1][2] ^ D[2], rhotates[4][2]); /* C[0] ^= */ A[1][0] = B[0] ^ (~B[1] & B[2]); /* C[1] ^= */ A[1][1] = B[1] ^ (~B[2] & B[3]); /* C[2] ^= */ A[1][2] = B[2] ^ (~B[3] & B[4]); /* C[3] ^= */ A[1][3] = B[3] ^ (~B[4] & B[0]); /* C[4] ^= */ A[1][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[2][1] ^ D[1], rhotates[0][1]); B[1] = ROL64(A[2][2] ^ D[2], rhotates[1][2]); B[2] = ROL64(A[2][3] ^ D[3], rhotates[2][3]); B[3] = ROL64(A[2][4] ^ D[4], rhotates[3][4]); B[4] = ROL64(A[2][0] ^ D[0], rhotates[4][0]); /* C[0] ^= */ A[2][0] = B[0] ^ (~B[1] & B[2]); /* C[1] ^= */ A[2][1] = B[1] ^ (~B[2] & B[3]); /* C[2] ^= */ A[2][2] = B[2] ^ (~B[3] & B[4]); /* C[3] ^= */ A[2][3] = B[3] ^ (~B[4] & B[0]); /* C[4] ^= */ A[2][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[3][4] ^ D[4], rhotates[0][4]); B[1] = ROL64(A[3][0] ^ D[0], rhotates[1][0]); B[2] = ROL64(A[3][1] ^ D[1], rhotates[2][1]); B[3] = ROL64(A[3][2] ^ D[2], rhotates[3][2]); B[4] = ROL64(A[3][3] ^ D[3], rhotates[4][3]); /* C[0] ^= */ A[3][0] = B[0] ^ (~B[1] & B[2]); /* C[1] ^= */ A[3][1] = B[1] ^ (~B[2] & B[3]); /* C[2] ^= */ A[3][2] = B[2] ^ (~B[3] & B[4]); /* C[3] ^= */ A[3][3] = B[3] ^ (~B[4] & B[0]); /* C[4] ^= */ A[3][4] = B[4] ^ (~B[0] & B[1]); B[0] = ROL64(A[4][2] ^ D[2], rhotates[0][2]); B[1] = ROL64(A[4][3] ^ D[3], rhotates[1][3]); B[2] = ROL64(A[4][4] ^ D[4], rhotates[2][4]); B[3] = ROL64(A[4][0] ^ D[0], rhotates[3][0]); B[4] = ROL64(A[4][1] ^ D[1], rhotates[4][1]); /* C[0] ^= */ A[4][0] = B[0] ^ (~B[1] & B[2]); /* C[1] ^= */ A[4][1] = B[1] ^ (~B[2] & B[3]); /* C[2] ^= */ A[4][2] = B[2] ^ (~B[3] & B[4]); /* C[3] ^= */ A[4][3] = B[3] ^ (~B[4] & B[0]); /* C[4] ^= */ A[4][4] = B[4] ^ (~B[0] & B[1]); } static void KeccakF1600(uint64_t A[5][5]) { size_t i; for (i = 0; i < 24; i += 4) { FourRounds(A, i); } } #endif static uint64_t BitInterleave(uint64_t Ai) { if (BIT_INTERLEAVE) { uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; uint32_t t0, t1; t0 = lo & 0x55555555; t0 |= t0 >> 1; t0 &= 0x33333333; t0 |= t0 >> 2; t0 &= 0x0f0f0f0f; t0 |= t0 >> 4; t0 &= 0x00ff00ff; t0 |= t0 >> 8; t0 &= 0x0000ffff; t1 = hi & 0x55555555; t1 |= t1 >> 1; t1 &= 0x33333333; t1 |= t1 >> 2; t1 &= 0x0f0f0f0f; t1 |= t1 >> 4; t1 &= 0x00ff00ff; t1 |= t1 >> 8; t1 <<= 16; lo &= 0xaaaaaaaa; lo |= lo << 1; lo &= 0xcccccccc; lo |= lo << 2; lo &= 0xf0f0f0f0; lo |= lo << 4; lo &= 0xff00ff00; lo |= lo << 8; lo >>= 16; hi &= 0xaaaaaaaa; hi |= hi << 1; hi &= 0xcccccccc; hi |= hi << 2; hi &= 0xf0f0f0f0; hi |= hi << 4; hi &= 0xff00ff00; hi |= hi << 8; hi &= 0xffff0000; Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); } return Ai; } static uint64_t BitDeinterleave(uint64_t Ai) { if (BIT_INTERLEAVE) { uint32_t hi = (uint32_t)(Ai >> 32), lo = (uint32_t)Ai; uint32_t t0, t1; t0 = lo & 0x0000ffff; t0 |= t0 << 8; t0 &= 0x00ff00ff; t0 |= t0 << 4; t0 &= 0x0f0f0f0f; t0 |= t0 << 2; t0 &= 0x33333333; t0 |= t0 << 1; t0 &= 0x55555555; t1 = hi << 16; t1 |= t1 >> 8; t1 &= 0xff00ff00; t1 |= t1 >> 4; t1 &= 0xf0f0f0f0; t1 |= t1 >> 2; t1 &= 0xcccccccc; t1 |= t1 >> 1; t1 &= 0xaaaaaaaa; lo >>= 16; lo |= lo << 8; lo &= 0x00ff00ff; lo |= lo << 4; lo &= 0x0f0f0f0f; lo |= lo << 2; lo &= 0x33333333; lo |= lo << 1; lo &= 0x55555555; hi &= 0xffff0000; hi |= hi >> 8; hi &= 0xff00ff00; hi |= hi >> 4; hi &= 0xf0f0f0f0; hi |= hi >> 2; hi &= 0xcccccccc; hi |= hi >> 1; hi &= 0xaaaaaaaa; Ai = ((uint64_t)(hi | lo) << 32) | (t1 | t0); } return Ai; } /* * SHA3_absorb can be called multiple times, but at each invocation * largest multiple of |r| out of |len| bytes are processed. Then * remaining amount of bytes is returned. This is done to spare caller * trouble of calculating the largest multiple of |r|. |r| can be viewed * as blocksize. It is commonly (1600 - 256*n)/8, e.g. 168, 136, 104, * 72, but can also be (1600 - 448)/8 = 144. All this means that message * padding and intermediate sub-block buffering, byte- or bitwise, is * caller's responsibility. */ size_t SHA3_absorb(uint64_t A[5][5], const unsigned char *inp, size_t len, size_t r) { uint64_t *A_flat = (uint64_t *)A; size_t i, w = r / 8; assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); while (len >= r) { for (i = 0; i < w; i++) { uint64_t Ai = (uint64_t)inp[0] | (uint64_t)inp[1] << 8 | (uint64_t)inp[2] << 16 | (uint64_t)inp[3] << 24 | (uint64_t)inp[4] << 32 | (uint64_t)inp[5] << 40 | (uint64_t)inp[6] << 48 | (uint64_t)inp[7] << 56; inp += 8; A_flat[i] ^= BitInterleave(Ai); } KeccakF1600(A); len -= r; } return len; } /* * sha3_squeeze is called once at the end to generate |out| hash value * of |len| bytes. */ void SHA3_squeeze(uint64_t A[5][5], unsigned char *out, size_t len, size_t r) { uint64_t *A_flat = (uint64_t *)A; size_t i, w = r / 8; assert(r < (25 * sizeof(A[0][0])) && (r % 8) == 0); while (len != 0) { for (i = 0; i < w && len != 0; i++) { uint64_t Ai = BitDeinterleave(A_flat[i]); if (len < 8) { for (i = 0; i < len; i++) { *out++ = (unsigned char)Ai; Ai >>= 8; } return; } out[0] = (unsigned char)(Ai); out[1] = (unsigned char)(Ai >> 8); out[2] = (unsigned char)(Ai >> 16); out[3] = (unsigned char)(Ai >> 24); out[4] = (unsigned char)(Ai >> 32); out[5] = (unsigned char)(Ai >> 40); out[6] = (unsigned char)(Ai >> 48); out[7] = (unsigned char)(Ai >> 56); out += 8; len -= 8; } if (len) KeccakF1600(A); } } #endif #ifdef SELFTEST /* * Post-padding one-shot implementations would look as following: * * SHA3_224 SHA3_sponge(inp, len, out, 224/8, (1600-448)/8); * SHA3_256 SHA3_sponge(inp, len, out, 256/8, (1600-512)/8); * SHA3_384 SHA3_sponge(inp, len, out, 384/8, (1600-768)/8); * SHA3_512 SHA3_sponge(inp, len, out, 512/8, (1600-1024)/8); * SHAKE_128 SHA3_sponge(inp, len, out, d, (1600-256)/8); * SHAKE_256 SHA3_sponge(inp, len, out, d, (1600-512)/8); */ void SHA3_sponge(const unsigned char *inp, size_t len, unsigned char *out, size_t d, size_t r) { uint64_t A[5][5]; memset(A, 0, sizeof(A)); SHA3_absorb(A, inp, len, r); SHA3_squeeze(A, out, d, r); } # include int main(void) { /* * This is 5-bit SHAKE128 test from http://csrc.nist.gov/groups/ST/toolkit/examples.html#aHashing */ unsigned char test[168] = { '\xf3', '\x3' }; unsigned char out[512]; size_t i; static const unsigned char result[512] = { 0x2E, 0x0A, 0xBF, 0xBA, 0x83, 0xE6, 0x72, 0x0B, 0xFB, 0xC2, 0x25, 0xFF, 0x6B, 0x7A, 0xB9, 0xFF, 0xCE, 0x58, 0xBA, 0x02, 0x7E, 0xE3, 0xD8, 0x98, 0x76, 0x4F, 0xEF, 0x28, 0x7D, 0xDE, 0xCC, 0xCA, 0x3E, 0x6E, 0x59, 0x98, 0x41, 0x1E, 0x7D, 0xDB, 0x32, 0xF6, 0x75, 0x38, 0xF5, 0x00, 0xB1, 0x8C, 0x8C, 0x97, 0xC4, 0x52, 0xC3, 0x70, 0xEA, 0x2C, 0xF0, 0xAF, 0xCA, 0x3E, 0x05, 0xDE, 0x7E, 0x4D, 0xE2, 0x7F, 0xA4, 0x41, 0xA9, 0xCB, 0x34, 0xFD, 0x17, 0xC9, 0x78, 0xB4, 0x2D, 0x5B, 0x7E, 0x7F, 0x9A, 0xB1, 0x8F, 0xFE, 0xFF, 0xC3, 0xC5, 0xAC, 0x2F, 0x3A, 0x45, 0x5E, 0xEB, 0xFD, 0xC7, 0x6C, 0xEA, 0xEB, 0x0A, 0x2C, 0xCA, 0x22, 0xEE, 0xF6, 0xE6, 0x37, 0xF4, 0xCA, 0xBE, 0x5C, 0x51, 0xDE, 0xD2, 0xE3, 0xFA, 0xD8, 0xB9, 0x52, 0x70, 0xA3, 0x21, 0x84, 0x56, 0x64, 0xF1, 0x07, 0xD1, 0x64, 0x96, 0xBB, 0x7A, 0xBF, 0xBE, 0x75, 0x04, 0xB6, 0xED, 0xE2, 0xE8, 0x9E, 0x4B, 0x99, 0x6F, 0xB5, 0x8E, 0xFD, 0xC4, 0x18, 0x1F, 0x91, 0x63, 0x38, 0x1C, 0xBE, 0x7B, 0xC0, 0x06, 0xA7, 0xA2, 0x05, 0x98, 0x9C, 0x52, 0x6C, 0xD1, 0xBD, 0x68, 0x98, 0x36, 0x93, 0xB4, 0xBD, 0xC5, 0x37, 0x28, 0xB2, 0x41, 0xC1, 0xCF, 0xF4, 0x2B, 0xB6, 0x11, 0x50, 0x2C, 0x35, 0x20, 0x5C, 0xAB, 0xB2, 0x88, 0x75, 0x56, 0x55, 0xD6, 0x20, 0xC6, 0x79, 0x94, 0xF0, 0x64, 0x51, 0x18, 0x7F, 0x6F, 0xD1, 0x7E, 0x04, 0x66, 0x82, 0xBA, 0x12, 0x86, 0x06, 0x3F, 0xF8, 0x8F, 0xE2, 0x50, 0x8D, 0x1F, 0xCA, 0xF9, 0x03, 0x5A, 0x12, 0x31, 0xAD, 0x41, 0x50, 0xA9, 0xC9, 0xB2, 0x4C, 0x9B, 0x2D, 0x66, 0xB2, 0xAD, 0x1B, 0xDE, 0x0B, 0xD0, 0xBB, 0xCB, 0x8B, 0xE0, 0x5B, 0x83, 0x52, 0x29, 0xEF, 0x79, 0x19, 0x73, 0x73, 0x23, 0x42, 0x44, 0x01, 0xE1, 0xD8, 0x37, 0xB6, 0x6E, 0xB4, 0xE6, 0x30, 0xFF, 0x1D, 0xE7, 0x0C, 0xB3, 0x17, 0xC2, 0xBA, 0xCB, 0x08, 0x00, 0x1D, 0x34, 0x77, 0xB7, 0xA7, 0x0A, 0x57, 0x6D, 0x20, 0x86, 0x90, 0x33, 0x58, 0x9D, 0x85, 0xA0, 0x1D, 0xDB, 0x2B, 0x66, 0x46, 0xC0, 0x43, 0xB5, 0x9F, 0xC0, 0x11, 0x31, 0x1D, 0xA6, 0x66, 0xFA, 0x5A, 0xD1, 0xD6, 0x38, 0x7F, 0xA9, 0xBC, 0x40, 0x15, 0xA3, 0x8A, 0x51, 0xD1, 0xDA, 0x1E, 0xA6, 0x1D, 0x64, 0x8D, 0xC8, 0xE3, 0x9A, 0x88, 0xB9, 0xD6, 0x22, 0xBD, 0xE2, 0x07, 0xFD, 0xAB, 0xC6, 0xF2, 0x82, 0x7A, 0x88, 0x0C, 0x33, 0x0B, 0xBF, 0x6D, 0xF7, 0x33, 0x77, 0x4B, 0x65, 0x3E, 0x57, 0x30, 0x5D, 0x78, 0xDC, 0xE1, 0x12, 0xF1, 0x0A, 0x2C, 0x71, 0xF4, 0xCD, 0xAD, 0x92, 0xED, 0x11, 0x3E, 0x1C, 0xEA, 0x63, 0xB9, 0x19, 0x25, 0xED, 0x28, 0x19, 0x1E, 0x6D, 0xBB, 0xB5, 0xAA, 0x5A, 0x2A, 0xFD, 0xA5, 0x1F, 0xC0, 0x5A, 0x3A, 0xF5, 0x25, 0x8B, 0x87, 0x66, 0x52, 0x43, 0x55, 0x0F, 0x28, 0x94, 0x8A, 0xE2, 0xB8, 0xBE, 0xB6, 0xBC, 0x9C, 0x77, 0x0B, 0x35, 0xF0, 0x67, 0xEA, 0xA6, 0x41, 0xEF, 0xE6, 0x5B, 0x1A, 0x44, 0x90, 0x9D, 0x1B, 0x14, 0x9F, 0x97, 0xEE, 0xA6, 0x01, 0x39, 0x1C, 0x60, 0x9E, 0xC8, 0x1D, 0x19, 0x30, 0xF5, 0x7C, 0x18, 0xA4, 0xE0, 0xFA, 0xB4, 0x91, 0xD1, 0xCA, 0xDF, 0xD5, 0x04, 0x83, 0x44, 0x9E, 0xDC, 0x0F, 0x07, 0xFF, 0xB2, 0x4D, 0x2C, 0x6F, 0x9A, 0x9A, 0x3B, 0xFF, 0x39, 0xAE, 0x3D, 0x57, 0xF5, 0x60, 0x65, 0x4D, 0x7D, 0x75, 0xC9, 0x08, 0xAB, 0xE6, 0x25, 0x64, 0x75, 0x3E, 0xAC, 0x39, 0xD7, 0x50, 0x3D, 0xA6, 0xD3, 0x7C, 0x2E, 0x32, 0xE1, 0xAF, 0x3B, 0x8A, 0xEC, 0x8A, 0xE3, 0x06, 0x9C, 0xD9 }; test[167] = '\x80'; SHA3_sponge(test, sizeof(test), out, sizeof(out), sizeof(test)); /* * Rationale behind keeping output [formatted as below] is that * one should be able to redirect it to a file, then copy-n-paste * final "output val" from official example to another file, and * compare the two with diff(1). */ for (i = 0; i < sizeof(out);) { printf("%02X", out[i]); printf(++i % 16 && i != sizeof(out) ? " " : "\n"); } if (memcmp(out, result, sizeof(out))) { fprintf(stderr, "failure\n"); return 1; } else { fprintf(stderr, "success\n"); return 0; } } #endif