/** @file NvmExpressDxe driver is used to manage non-volatile memory subsystem which follows NVM Express specification. Copyright (c) 2013 - 2018, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "NvmExpress.h" /** Read some sectors from the device. @param Device The pointer to the NVME_DEVICE_PRIVATE_DATA data structure. @param Buffer The buffer used to store the data read from the device. @param Lba The start block number. @param Blocks Total block number to be read. @retval EFI_SUCCESS Datum are read from the device. @retval Others Fail to read all the datum. **/ EFI_STATUS ReadSectors ( IN NVME_DEVICE_PRIVATE_DATA *Device, IN UINT64 Buffer, IN UINT64 Lba, IN UINT32 Blocks ) { NVME_CONTROLLER_PRIVATE_DATA *Private; UINT32 Bytes; EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; EFI_NVM_EXPRESS_COMMAND Command; EFI_NVM_EXPRESS_COMPLETION Completion; EFI_STATUS Status; UINT32 BlockSize; Private = Device->Controller; BlockSize = Device->Media.BlockSize; Bytes = Blocks * BlockSize; ZeroMem (&CommandPacket, sizeof (EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof (EFI_NVM_EXPRESS_COMMAND)); ZeroMem (&Completion, sizeof (EFI_NVM_EXPRESS_COMPLETION)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeCompletion = &Completion; CommandPacket.NvmeCmd->Cdw0.Opcode = NVME_IO_READ_OPC; CommandPacket.NvmeCmd->Nsid = Device->NamespaceId; CommandPacket.TransferBuffer = (VOID *)(UINTN)Buffer; CommandPacket.TransferLength = Bytes; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueType = NVME_IO_QUEUE; CommandPacket.NvmeCmd->Cdw10 = (UINT32)Lba; CommandPacket.NvmeCmd->Cdw11 = (UINT32)RShiftU64 (Lba, 32); CommandPacket.NvmeCmd->Cdw12 = (Blocks - 1) & 0xFFFF; CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID | CDW12_VALID; Status = Private->Passthru.PassThru ( &Private->Passthru, Device->NamespaceId, &CommandPacket, NULL ); return Status; } /** Write some sectors to the device. @param Device The pointer to the NVME_DEVICE_PRIVATE_DATA data structure. @param Buffer The buffer to be written into the device. @param Lba The start block number. @param Blocks Total block number to be written. @retval EFI_SUCCESS Datum are written into the buffer. @retval Others Fail to write all the datum. **/ EFI_STATUS WriteSectors ( IN NVME_DEVICE_PRIVATE_DATA *Device, IN UINT64 Buffer, IN UINT64 Lba, IN UINT32 Blocks ) { NVME_CONTROLLER_PRIVATE_DATA *Private; EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; EFI_NVM_EXPRESS_COMMAND Command; EFI_NVM_EXPRESS_COMPLETION Completion; EFI_STATUS Status; UINT32 Bytes; UINT32 BlockSize; Private = Device->Controller; BlockSize = Device->Media.BlockSize; Bytes = Blocks * BlockSize; ZeroMem (&CommandPacket, sizeof (EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof (EFI_NVM_EXPRESS_COMMAND)); ZeroMem (&Completion, sizeof (EFI_NVM_EXPRESS_COMPLETION)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeCompletion = &Completion; CommandPacket.NvmeCmd->Cdw0.Opcode = NVME_IO_WRITE_OPC; CommandPacket.NvmeCmd->Nsid = Device->NamespaceId; CommandPacket.TransferBuffer = (VOID *)(UINTN)Buffer; CommandPacket.TransferLength = Bytes; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueType = NVME_IO_QUEUE; CommandPacket.NvmeCmd->Cdw10 = (UINT32)Lba; CommandPacket.NvmeCmd->Cdw11 = (UINT32)RShiftU64 (Lba, 32); // // Set Force Unit Access bit (bit 30) to use write-through behaviour // CommandPacket.NvmeCmd->Cdw12 = ((Blocks - 1) & 0xFFFF) | BIT30; CommandPacket.MetadataBuffer = NULL; CommandPacket.MetadataLength = 0; CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID | CDW12_VALID; Status = Private->Passthru.PassThru ( &Private->Passthru, Device->NamespaceId, &CommandPacket, NULL ); return Status; } /** Read some blocks from the device. @param Device The pointer to the NVME_DEVICE_PRIVATE_DATA data structure. @param Buffer The buffer used to store the data read from the device. @param Lba The start block number. @param Blocks Total block number to be read. @retval EFI_SUCCESS Datum are read from the device. @retval Others Fail to read all the datum. **/ EFI_STATUS NvmeRead ( IN NVME_DEVICE_PRIVATE_DATA *Device, OUT VOID *Buffer, IN UINT64 Lba, IN UINTN Blocks ) { EFI_STATUS Status; UINT32 BlockSize; NVME_CONTROLLER_PRIVATE_DATA *Private; UINT32 MaxTransferBlocks; UINTN OrginalBlocks; BOOLEAN IsEmpty; EFI_TPL OldTpl; // // Wait for the device's asynchronous I/O queue to become empty. // while (TRUE) { OldTpl = gBS->RaiseTPL (TPL_NOTIFY); IsEmpty = IsListEmpty (&Device->AsyncQueue); gBS->RestoreTPL (OldTpl); if (IsEmpty) { break; } gBS->Stall (100); } Status = EFI_SUCCESS; Private = Device->Controller; BlockSize = Device->Media.BlockSize; OrginalBlocks = Blocks; if (Private->ControllerData->Mdts != 0) { MaxTransferBlocks = (1 << (Private->ControllerData->Mdts)) * (1 << (Private->Cap.Mpsmin + 12)) / BlockSize; } else { MaxTransferBlocks = 1024; } while (Blocks > 0) { if (Blocks > MaxTransferBlocks) { Status = ReadSectors (Device, (UINT64)(UINTN)Buffer, Lba, MaxTransferBlocks); Blocks -= MaxTransferBlocks; Buffer = (VOID *)(UINTN)((UINT64)(UINTN)Buffer + MaxTransferBlocks * BlockSize); Lba += MaxTransferBlocks; } else { Status = ReadSectors (Device, (UINT64)(UINTN)Buffer, Lba, (UINT32)Blocks); Blocks = 0; } if (EFI_ERROR (Status)) { break; } } DEBUG (( DEBUG_BLKIO, "%a: Lba = 0x%08Lx, Original = 0x%08Lx, " "Remaining = 0x%08Lx, BlockSize = 0x%x, Status = %r\n", __func__, Lba, (UINT64)OrginalBlocks, (UINT64)Blocks, BlockSize, Status )); return Status; } /** Write some blocks to the device. @param Device The pointer to the NVME_DEVICE_PRIVATE_DATA data structure. @param Buffer The buffer to be written into the device. @param Lba The start block number. @param Blocks Total block number to be written. @retval EFI_SUCCESS Datum are written into the buffer. @retval Others Fail to write all the datum. **/ EFI_STATUS NvmeWrite ( IN NVME_DEVICE_PRIVATE_DATA *Device, IN VOID *Buffer, IN UINT64 Lba, IN UINTN Blocks ) { EFI_STATUS Status; UINT32 BlockSize; NVME_CONTROLLER_PRIVATE_DATA *Private; UINT32 MaxTransferBlocks; UINTN OrginalBlocks; BOOLEAN IsEmpty; EFI_TPL OldTpl; // // Wait for the device's asynchronous I/O queue to become empty. // while (TRUE) { OldTpl = gBS->RaiseTPL (TPL_NOTIFY); IsEmpty = IsListEmpty (&Device->AsyncQueue); gBS->RestoreTPL (OldTpl); if (IsEmpty) { break; } gBS->Stall (100); } Status = EFI_SUCCESS; Private = Device->Controller; BlockSize = Device->Media.BlockSize; OrginalBlocks = Blocks; if (Private->ControllerData->Mdts != 0) { MaxTransferBlocks = (1 << (Private->ControllerData->Mdts)) * (1 << (Private->Cap.Mpsmin + 12)) / BlockSize; } else { MaxTransferBlocks = 1024; } while (Blocks > 0) { if (Blocks > MaxTransferBlocks) { Status = WriteSectors (Device, (UINT64)(UINTN)Buffer, Lba, MaxTransferBlocks); Blocks -= MaxTransferBlocks; Buffer = (VOID *)(UINTN)((UINT64)(UINTN)Buffer + MaxTransferBlocks * BlockSize); Lba += MaxTransferBlocks; } else { Status = WriteSectors (Device, (UINT64)(UINTN)Buffer, Lba, (UINT32)Blocks); Blocks = 0; } if (EFI_ERROR (Status)) { break; } } DEBUG (( DEBUG_BLKIO, "%a: Lba = 0x%08Lx, Original = 0x%08Lx, " "Remaining = 0x%08Lx, BlockSize = 0x%x, Status = %r\n", __func__, Lba, (UINT64)OrginalBlocks, (UINT64)Blocks, BlockSize, Status )); return Status; } /** Flushes all modified data to the device. @param Device The pointer to the NVME_DEVICE_PRIVATE_DATA data structure. @retval EFI_SUCCESS Datum are written into the buffer. @retval Others Fail to write all the datum. **/ EFI_STATUS NvmeFlush ( IN NVME_DEVICE_PRIVATE_DATA *Device ) { NVME_CONTROLLER_PRIVATE_DATA *Private; EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; EFI_NVM_EXPRESS_COMMAND Command; EFI_NVM_EXPRESS_COMPLETION Completion; EFI_STATUS Status; Private = Device->Controller; ZeroMem (&CommandPacket, sizeof (EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof (EFI_NVM_EXPRESS_COMMAND)); ZeroMem (&Completion, sizeof (EFI_NVM_EXPRESS_COMPLETION)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeCompletion = &Completion; CommandPacket.NvmeCmd->Cdw0.Opcode = NVME_IO_FLUSH_OPC; CommandPacket.NvmeCmd->Nsid = Device->NamespaceId; CommandPacket.CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket.QueueType = NVME_IO_QUEUE; Status = Private->Passthru.PassThru ( &Private->Passthru, Device->NamespaceId, &CommandPacket, NULL ); return Status; } /** Nonblocking I/O callback funtion when the event is signaled. @param[in] Event The Event this notify function registered to. @param[in] Context Pointer to the context data registered to the Event. **/ VOID EFIAPI AsyncIoCallback ( IN EFI_EVENT Event, IN VOID *Context ) { NVME_BLKIO2_SUBTASK *Subtask; NVME_BLKIO2_REQUEST *Request; NVME_CQ *Completion; EFI_BLOCK_IO2_TOKEN *Token; gBS->CloseEvent (Event); Subtask = (NVME_BLKIO2_SUBTASK *)Context; Completion = (NVME_CQ *)Subtask->CommandPacket->NvmeCompletion; Request = Subtask->BlockIo2Request; Token = Request->Token; if (Token->TransactionStatus == EFI_SUCCESS) { // // If previous subtask already fails, do not check the result of // subsequent subtasks. // if ((Completion->Sct != 0) || (Completion->Sc != 0)) { Token->TransactionStatus = EFI_DEVICE_ERROR; // // Dump completion entry status for debugging. // DEBUG_CODE_BEGIN (); NvmeDumpStatus (Completion); DEBUG_CODE_END (); } } // // Remove the subtask from the BlockIo2 subtasks list. // RemoveEntryList (&Subtask->Link); if (IsListEmpty (&Request->SubtasksQueue) && Request->LastSubtaskSubmitted) { // // Remove the BlockIo2 request from the device asynchronous queue. // RemoveEntryList (&Request->Link); FreePool (Request); gBS->SignalEvent (Token->Event); } FreePool (Subtask->CommandPacket->NvmeCmd); FreePool (Subtask->CommandPacket->NvmeCompletion); FreePool (Subtask->CommandPacket); FreePool (Subtask); } /** Read some sectors from the device in an asynchronous manner. @param Device The pointer to the NVME_DEVICE_PRIVATE_DATA data structure. @param Request The pointer to the NVME_BLKIO2_REQUEST data structure. @param Buffer The buffer used to store the data read from the device. @param Lba The start block number. @param Blocks Total block number to be read. @param IsLast The last subtask of an asynchronous read request. @retval EFI_SUCCESS Asynchronous read request has been queued. @retval Others Fail to send the asynchronous request. **/ EFI_STATUS AsyncReadSectors ( IN NVME_DEVICE_PRIVATE_DATA *Device, IN NVME_BLKIO2_REQUEST *Request, IN UINT64 Buffer, IN UINT64 Lba, IN UINT32 Blocks, IN BOOLEAN IsLast ) { NVME_CONTROLLER_PRIVATE_DATA *Private; UINT32 Bytes; NVME_BLKIO2_SUBTASK *Subtask; EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET *CommandPacket; EFI_NVM_EXPRESS_COMMAND *Command; EFI_NVM_EXPRESS_COMPLETION *Completion; EFI_STATUS Status; UINT32 BlockSize; EFI_TPL OldTpl; Private = Device->Controller; BlockSize = Device->Media.BlockSize; Bytes = Blocks * BlockSize; CommandPacket = NULL; Command = NULL; Completion = NULL; Subtask = AllocateZeroPool (sizeof (NVME_BLKIO2_SUBTASK)); if (Subtask == NULL) { Status = EFI_OUT_OF_RESOURCES; goto ErrorExit; } Subtask->Signature = NVME_BLKIO2_SUBTASK_SIGNATURE; Subtask->IsLast = IsLast; Subtask->NamespaceId = Device->NamespaceId; Subtask->BlockIo2Request = Request; CommandPacket = AllocateZeroPool (sizeof (EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); if (CommandPacket == NULL) { Status = EFI_OUT_OF_RESOURCES; goto ErrorExit; } else { Subtask->CommandPacket = CommandPacket; } Command = AllocateZeroPool (sizeof (EFI_NVM_EXPRESS_COMMAND)); if (Command == NULL) { Status = EFI_OUT_OF_RESOURCES; goto ErrorExit; } Completion = AllocateZeroPool (sizeof (EFI_NVM_EXPRESS_COMPLETION)); if (Completion == NULL) { Status = EFI_OUT_OF_RESOURCES; goto ErrorExit; } // // Create Event // Status = gBS->CreateEvent ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, AsyncIoCallback, Subtask, &Subtask->Event ); if (EFI_ERROR (Status)) { goto ErrorExit; } CommandPacket->NvmeCmd = Command; CommandPacket->NvmeCompletion = Completion; CommandPacket->NvmeCmd->Cdw0.Opcode = NVME_IO_READ_OPC; CommandPacket->NvmeCmd->Nsid = Device->NamespaceId; CommandPacket->TransferBuffer = (VOID *)(UINTN)Buffer; CommandPacket->TransferLength = Bytes; CommandPacket->CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket->QueueType = NVME_IO_QUEUE; CommandPacket->NvmeCmd->Cdw10 = (UINT32)Lba; CommandPacket->NvmeCmd->Cdw11 = (UINT32)RShiftU64 (Lba, 32); CommandPacket->NvmeCmd->Cdw12 = (Blocks - 1) & 0xFFFF; CommandPacket->NvmeCmd->Flags = CDW10_VALID | CDW11_VALID | CDW12_VALID; OldTpl = gBS->RaiseTPL (TPL_NOTIFY); InsertTailList (&Private->UnsubmittedSubtasks, &Subtask->Link); Request->UnsubmittedSubtaskNum++; gBS->RestoreTPL (OldTpl); return EFI_SUCCESS; ErrorExit: // // Resource cleanup if asynchronous read request has not been queued. // if (Completion != NULL) { FreePool (Completion); } if (Command != NULL) { FreePool (Command); } if (CommandPacket != NULL) { FreePool (CommandPacket); } if (Subtask != NULL) { if (Subtask->Event != NULL) { gBS->CloseEvent (Subtask->Event); } FreePool (Subtask); } return Status; } /** Write some sectors from the device in an asynchronous manner. @param Device The pointer to the NVME_DEVICE_PRIVATE_DATA data structure. @param Request The pointer to the NVME_BLKIO2_REQUEST data structure. @param Buffer The buffer used to store the data written to the device. @param Lba The start block number. @param Blocks Total block number to be written. @param IsLast The last subtask of an asynchronous write request. @retval EFI_SUCCESS Asynchronous write request has been queued. @retval Others Fail to send the asynchronous request. **/ EFI_STATUS AsyncWriteSectors ( IN NVME_DEVICE_PRIVATE_DATA *Device, IN NVME_BLKIO2_REQUEST *Request, IN UINT64 Buffer, IN UINT64 Lba, IN UINT32 Blocks, IN BOOLEAN IsLast ) { NVME_CONTROLLER_PRIVATE_DATA *Private; UINT32 Bytes; NVME_BLKIO2_SUBTASK *Subtask; EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET *CommandPacket; EFI_NVM_EXPRESS_COMMAND *Command; EFI_NVM_EXPRESS_COMPLETION *Completion; EFI_STATUS Status; UINT32 BlockSize; EFI_TPL OldTpl; Private = Device->Controller; BlockSize = Device->Media.BlockSize; Bytes = Blocks * BlockSize; CommandPacket = NULL; Command = NULL; Completion = NULL; Subtask = AllocateZeroPool (sizeof (NVME_BLKIO2_SUBTASK)); if (Subtask == NULL) { Status = EFI_OUT_OF_RESOURCES; goto ErrorExit; } Subtask->Signature = NVME_BLKIO2_SUBTASK_SIGNATURE; Subtask->IsLast = IsLast; Subtask->NamespaceId = Device->NamespaceId; Subtask->BlockIo2Request = Request; CommandPacket = AllocateZeroPool (sizeof (EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); if (CommandPacket == NULL) { Status = EFI_OUT_OF_RESOURCES; goto ErrorExit; } else { Subtask->CommandPacket = CommandPacket; } Command = AllocateZeroPool (sizeof (EFI_NVM_EXPRESS_COMMAND)); if (Command == NULL) { Status = EFI_OUT_OF_RESOURCES; goto ErrorExit; } Completion = AllocateZeroPool (sizeof (EFI_NVM_EXPRESS_COMPLETION)); if (Completion == NULL) { Status = EFI_OUT_OF_RESOURCES; goto ErrorExit; } // // Create Event // Status = gBS->CreateEvent ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, AsyncIoCallback, Subtask, &Subtask->Event ); if (EFI_ERROR (Status)) { goto ErrorExit; } CommandPacket->NvmeCmd = Command; CommandPacket->NvmeCompletion = Completion; CommandPacket->NvmeCmd->Cdw0.Opcode = NVME_IO_WRITE_OPC; CommandPacket->NvmeCmd->Nsid = Device->NamespaceId; CommandPacket->TransferBuffer = (VOID *)(UINTN)Buffer; CommandPacket->TransferLength = Bytes; CommandPacket->CommandTimeout = NVME_GENERIC_TIMEOUT; CommandPacket->QueueType = NVME_IO_QUEUE; CommandPacket->NvmeCmd->Cdw10 = (UINT32)Lba; CommandPacket->NvmeCmd->Cdw11 = (UINT32)RShiftU64 (Lba, 32); // // Set Force Unit Access bit (bit 30) to use write-through behaviour // CommandPacket->NvmeCmd->Cdw12 = ((Blocks - 1) & 0xFFFF) | BIT30; CommandPacket->NvmeCmd->Flags = CDW10_VALID | CDW11_VALID | CDW12_VALID; OldTpl = gBS->RaiseTPL (TPL_NOTIFY); InsertTailList (&Private->UnsubmittedSubtasks, &Subtask->Link); Request->UnsubmittedSubtaskNum++; gBS->RestoreTPL (OldTpl); return EFI_SUCCESS; ErrorExit: // // Resource cleanup if asynchronous read request has not been queued. // if (Completion != NULL) { FreePool (Completion); } if (Command != NULL) { FreePool (Command); } if (CommandPacket != NULL) { FreePool (CommandPacket); } if (Subtask != NULL) { if (Subtask->Event != NULL) { gBS->CloseEvent (Subtask->Event); } FreePool (Subtask); } return Status; } /** Read some blocks from the device in an asynchronous manner. @param Device The pointer to the NVME_DEVICE_PRIVATE_DATA data structure. @param Buffer The buffer used to store the data read from the device. @param Lba The start block number. @param Blocks Total block number to be read. @param Token A pointer to the token associated with the transaction. @retval EFI_SUCCESS Data are read from the device. @retval Others Fail to read all the data. **/ EFI_STATUS NvmeAsyncRead ( IN NVME_DEVICE_PRIVATE_DATA *Device, OUT VOID *Buffer, IN UINT64 Lba, IN UINTN Blocks, IN EFI_BLOCK_IO2_TOKEN *Token ) { EFI_STATUS Status; UINT32 BlockSize; NVME_CONTROLLER_PRIVATE_DATA *Private; NVME_BLKIO2_REQUEST *BlkIo2Req; UINT32 MaxTransferBlocks; UINTN OrginalBlocks; BOOLEAN IsEmpty; EFI_TPL OldTpl; Status = EFI_SUCCESS; Private = Device->Controller; BlockSize = Device->Media.BlockSize; OrginalBlocks = Blocks; BlkIo2Req = AllocateZeroPool (sizeof (NVME_BLKIO2_REQUEST)); if (BlkIo2Req == NULL) { return EFI_OUT_OF_RESOURCES; } BlkIo2Req->Signature = NVME_BLKIO2_REQUEST_SIGNATURE; BlkIo2Req->Token = Token; OldTpl = gBS->RaiseTPL (TPL_NOTIFY); InsertTailList (&Device->AsyncQueue, &BlkIo2Req->Link); gBS->RestoreTPL (OldTpl); InitializeListHead (&BlkIo2Req->SubtasksQueue); if (Private->ControllerData->Mdts != 0) { MaxTransferBlocks = (1 << (Private->ControllerData->Mdts)) * (1 << (Private->Cap.Mpsmin + 12)) / BlockSize; } else { MaxTransferBlocks = 1024; } while (Blocks > 0) { if (Blocks > MaxTransferBlocks) { Status = AsyncReadSectors ( Device, BlkIo2Req, (UINT64)(UINTN)Buffer, Lba, MaxTransferBlocks, FALSE ); Blocks -= MaxTransferBlocks; Buffer = (VOID *)(UINTN)((UINT64)(UINTN)Buffer + MaxTransferBlocks * BlockSize); Lba += MaxTransferBlocks; } else { Status = AsyncReadSectors ( Device, BlkIo2Req, (UINT64)(UINTN)Buffer, Lba, (UINT32)Blocks, TRUE ); Blocks = 0; } if (EFI_ERROR (Status)) { OldTpl = gBS->RaiseTPL (TPL_NOTIFY); IsEmpty = IsListEmpty (&BlkIo2Req->SubtasksQueue) && (BlkIo2Req->UnsubmittedSubtaskNum == 0); if (IsEmpty) { // // Remove the BlockIo2 request from the device asynchronous queue. // RemoveEntryList (&BlkIo2Req->Link); FreePool (BlkIo2Req); Status = EFI_DEVICE_ERROR; } else { // // There are previous BlockIo2 subtasks still running, EFI_SUCCESS // should be returned to make sure that the caller does not free // resources still using by these requests. // Status = EFI_SUCCESS; Token->TransactionStatus = EFI_DEVICE_ERROR; BlkIo2Req->LastSubtaskSubmitted = TRUE; } gBS->RestoreTPL (OldTpl); break; } } DEBUG (( DEBUG_BLKIO, "%a: Lba = 0x%08Lx, Original = 0x%08Lx, " "Remaining = 0x%08Lx, BlockSize = 0x%x, Status = %r\n", __func__, Lba, (UINT64)OrginalBlocks, (UINT64)Blocks, BlockSize, Status )); return Status; } /** Write some blocks from the device in an asynchronous manner. @param Device The pointer to the NVME_DEVICE_PRIVATE_DATA data structure. @param Buffer The buffer used to store the data written to the device. @param Lba The start block number. @param Blocks Total block number to be written. @param Token A pointer to the token associated with the transaction. @retval EFI_SUCCESS Data are written to the device. @retval Others Fail to write all the data. **/ EFI_STATUS NvmeAsyncWrite ( IN NVME_DEVICE_PRIVATE_DATA *Device, IN VOID *Buffer, IN UINT64 Lba, IN UINTN Blocks, IN EFI_BLOCK_IO2_TOKEN *Token ) { EFI_STATUS Status; UINT32 BlockSize; NVME_CONTROLLER_PRIVATE_DATA *Private; NVME_BLKIO2_REQUEST *BlkIo2Req; UINT32 MaxTransferBlocks; UINTN OrginalBlocks; BOOLEAN IsEmpty; EFI_TPL OldTpl; Status = EFI_SUCCESS; Private = Device->Controller; BlockSize = Device->Media.BlockSize; OrginalBlocks = Blocks; BlkIo2Req = AllocateZeroPool (sizeof (NVME_BLKIO2_REQUEST)); if (BlkIo2Req == NULL) { return EFI_OUT_OF_RESOURCES; } BlkIo2Req->Signature = NVME_BLKIO2_REQUEST_SIGNATURE; BlkIo2Req->Token = Token; OldTpl = gBS->RaiseTPL (TPL_NOTIFY); InsertTailList (&Device->AsyncQueue, &BlkIo2Req->Link); gBS->RestoreTPL (OldTpl); InitializeListHead (&BlkIo2Req->SubtasksQueue); if (Private->ControllerData->Mdts != 0) { MaxTransferBlocks = (1 << (Private->ControllerData->Mdts)) * (1 << (Private->Cap.Mpsmin + 12)) / BlockSize; } else { MaxTransferBlocks = 1024; } while (Blocks > 0) { if (Blocks > MaxTransferBlocks) { Status = AsyncWriteSectors ( Device, BlkIo2Req, (UINT64)(UINTN)Buffer, Lba, MaxTransferBlocks, FALSE ); Blocks -= MaxTransferBlocks; Buffer = (VOID *)(UINTN)((UINT64)(UINTN)Buffer + MaxTransferBlocks * BlockSize); Lba += MaxTransferBlocks; } else { Status = AsyncWriteSectors ( Device, BlkIo2Req, (UINT64)(UINTN)Buffer, Lba, (UINT32)Blocks, TRUE ); Blocks = 0; } if (EFI_ERROR (Status)) { OldTpl = gBS->RaiseTPL (TPL_NOTIFY); IsEmpty = IsListEmpty (&BlkIo2Req->SubtasksQueue) && (BlkIo2Req->UnsubmittedSubtaskNum == 0); if (IsEmpty) { // // Remove the BlockIo2 request from the device asynchronous queue. // RemoveEntryList (&BlkIo2Req->Link); FreePool (BlkIo2Req); Status = EFI_DEVICE_ERROR; } else { // // There are previous BlockIo2 subtasks still running, EFI_SUCCESS // should be returned to make sure that the caller does not free // resources still using by these requests. // Status = EFI_SUCCESS; Token->TransactionStatus = EFI_DEVICE_ERROR; BlkIo2Req->LastSubtaskSubmitted = TRUE; } gBS->RestoreTPL (OldTpl); break; } } DEBUG (( DEBUG_BLKIO, "%a: Lba = 0x%08Lx, Original = 0x%08Lx, " "Remaining = 0x%08Lx, BlockSize = 0x%x, Status = %r\n", __func__, Lba, (UINT64)OrginalBlocks, (UINT64)Blocks, BlockSize, Status )); return Status; } /** Reset the Block Device. @param This Indicates a pointer to the calling context. @param ExtendedVerification Driver may perform diagnostics on reset. @retval EFI_SUCCESS The device was reset. @retval EFI_DEVICE_ERROR The device is not functioning properly and could not be reset. **/ EFI_STATUS EFIAPI NvmeBlockIoReset ( IN EFI_BLOCK_IO_PROTOCOL *This, IN BOOLEAN ExtendedVerification ) { EFI_TPL OldTpl; NVME_CONTROLLER_PRIVATE_DATA *Private; NVME_DEVICE_PRIVATE_DATA *Device; EFI_STATUS Status; if (This == NULL) { return EFI_INVALID_PARAMETER; } // // For Nvm Express subsystem, reset block device means reset controller. // OldTpl = gBS->RaiseTPL (TPL_CALLBACK); Device = NVME_DEVICE_PRIVATE_DATA_FROM_BLOCK_IO (This); Private = Device->Controller; Status = NvmeControllerInit (Private); if (EFI_ERROR (Status)) { Status = EFI_DEVICE_ERROR; } gBS->RestoreTPL (OldTpl); return Status; } /** Read BufferSize bytes from Lba into Buffer. @param This Indicates a pointer to the calling context. @param MediaId Id of the media, changes every time the media is replaced. @param Lba The starting Logical Block Address to read from. @param BufferSize Size of Buffer, must be a multiple of device block size. @param Buffer A pointer to the destination buffer for the data. The caller is responsible for either having implicit or explicit ownership of the buffer. @retval EFI_SUCCESS The data was read correctly from the device. @retval EFI_DEVICE_ERROR The device reported an error while performing the read. @retval EFI_NO_MEDIA There is no media in the device. @retval EFI_MEDIA_CHANGED The MediaId does not matched the current device. @retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device. @retval EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not on proper alignment. **/ EFI_STATUS EFIAPI NvmeBlockIoReadBlocks ( IN EFI_BLOCK_IO_PROTOCOL *This, IN UINT32 MediaId, IN EFI_LBA Lba, IN UINTN BufferSize, OUT VOID *Buffer ) { NVME_DEVICE_PRIVATE_DATA *Device; EFI_STATUS Status; EFI_BLOCK_IO_MEDIA *Media; UINTN BlockSize; UINTN NumberOfBlocks; UINTN IoAlign; EFI_TPL OldTpl; // // Check parameters. // if (This == NULL) { return EFI_INVALID_PARAMETER; } Media = This->Media; if (MediaId != Media->MediaId) { return EFI_MEDIA_CHANGED; } if (Buffer == NULL) { return EFI_INVALID_PARAMETER; } if (BufferSize == 0) { return EFI_SUCCESS; } BlockSize = Media->BlockSize; if ((BufferSize % BlockSize) != 0) { return EFI_BAD_BUFFER_SIZE; } NumberOfBlocks = BufferSize / BlockSize; if ((Lba + NumberOfBlocks - 1) > Media->LastBlock) { return EFI_INVALID_PARAMETER; } IoAlign = Media->IoAlign; if ((IoAlign > 0) && (((UINTN)Buffer & (IoAlign - 1)) != 0)) { return EFI_INVALID_PARAMETER; } OldTpl = gBS->RaiseTPL (TPL_CALLBACK); Device = NVME_DEVICE_PRIVATE_DATA_FROM_BLOCK_IO (This); Status = NvmeRead (Device, Buffer, Lba, NumberOfBlocks); gBS->RestoreTPL (OldTpl); return Status; } /** Write BufferSize bytes from Lba into Buffer. @param This Indicates a pointer to the calling context. @param MediaId The media ID that the write request is for. @param Lba The starting logical block address to be written. The caller is responsible for writing to only legitimate locations. @param BufferSize Size of Buffer, must be a multiple of device block size. @param Buffer A pointer to the source buffer for the data. @retval EFI_SUCCESS The data was written correctly to the device. @retval EFI_WRITE_PROTECTED The device can not be written to. @retval EFI_DEVICE_ERROR The device reported an error while performing the write. @retval EFI_NO_MEDIA There is no media in the device. @retval EFI_MEDIA_CHNAGED The MediaId does not matched the current device. @retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device. @retval EFI_INVALID_PARAMETER The write request contains LBAs that are not valid, or the buffer is not on proper alignment. **/ EFI_STATUS EFIAPI NvmeBlockIoWriteBlocks ( IN EFI_BLOCK_IO_PROTOCOL *This, IN UINT32 MediaId, IN EFI_LBA Lba, IN UINTN BufferSize, IN VOID *Buffer ) { NVME_DEVICE_PRIVATE_DATA *Device; EFI_STATUS Status; EFI_BLOCK_IO_MEDIA *Media; UINTN BlockSize; UINTN NumberOfBlocks; UINTN IoAlign; EFI_TPL OldTpl; // // Check parameters. // if (This == NULL) { return EFI_INVALID_PARAMETER; } Media = This->Media; if (MediaId != Media->MediaId) { return EFI_MEDIA_CHANGED; } if (Buffer == NULL) { return EFI_INVALID_PARAMETER; } if (BufferSize == 0) { return EFI_SUCCESS; } BlockSize = Media->BlockSize; if ((BufferSize % BlockSize) != 0) { return EFI_BAD_BUFFER_SIZE; } NumberOfBlocks = BufferSize / BlockSize; if ((Lba + NumberOfBlocks - 1) > Media->LastBlock) { return EFI_INVALID_PARAMETER; } IoAlign = Media->IoAlign; if ((IoAlign > 0) && (((UINTN)Buffer & (IoAlign - 1)) != 0)) { return EFI_INVALID_PARAMETER; } OldTpl = gBS->RaiseTPL (TPL_CALLBACK); Device = NVME_DEVICE_PRIVATE_DATA_FROM_BLOCK_IO (This); Status = NvmeWrite (Device, Buffer, Lba, NumberOfBlocks); gBS->RestoreTPL (OldTpl); return Status; } /** Flush the Block Device. @param This Indicates a pointer to the calling context. @retval EFI_SUCCESS All outstanding data was written to the device. @retval EFI_DEVICE_ERROR The device reported an error while writing back the data. @retval EFI_NO_MEDIA There is no media in the device. **/ EFI_STATUS EFIAPI NvmeBlockIoFlushBlocks ( IN EFI_BLOCK_IO_PROTOCOL *This ) { NVME_DEVICE_PRIVATE_DATA *Device; EFI_STATUS Status; EFI_TPL OldTpl; // // Check parameters. // if (This == NULL) { return EFI_INVALID_PARAMETER; } OldTpl = gBS->RaiseTPL (TPL_CALLBACK); Device = NVME_DEVICE_PRIVATE_DATA_FROM_BLOCK_IO (This); Status = NvmeFlush (Device); gBS->RestoreTPL (OldTpl); return Status; } /** Reset the block device hardware. @param[in] This Indicates a pointer to the calling context. @param[in] ExtendedVerification Indicates that the driver may perform a more exhausive verfication operation of the device during reset. @retval EFI_SUCCESS The device was reset. @retval EFI_DEVICE_ERROR The device is not functioning properly and could not be reset. **/ EFI_STATUS EFIAPI NvmeBlockIoResetEx ( IN EFI_BLOCK_IO2_PROTOCOL *This, IN BOOLEAN ExtendedVerification ) { EFI_STATUS Status; NVME_DEVICE_PRIVATE_DATA *Device; NVME_CONTROLLER_PRIVATE_DATA *Private; BOOLEAN IsEmpty; EFI_TPL OldTpl; if (This == NULL) { return EFI_INVALID_PARAMETER; } Device = NVME_DEVICE_PRIVATE_DATA_FROM_BLOCK_IO2 (This); Private = Device->Controller; // // Wait for the asynchronous PassThru queue to become empty. // while (TRUE) { OldTpl = gBS->RaiseTPL (TPL_NOTIFY); IsEmpty = IsListEmpty (&Private->AsyncPassThruQueue) && IsListEmpty (&Private->UnsubmittedSubtasks); gBS->RestoreTPL (OldTpl); if (IsEmpty) { break; } gBS->Stall (100); } OldTpl = gBS->RaiseTPL (TPL_CALLBACK); Status = NvmeControllerInit (Private); if (EFI_ERROR (Status)) { Status = EFI_DEVICE_ERROR; } gBS->RestoreTPL (OldTpl); return Status; } /** Read BufferSize bytes from Lba into Buffer. This function reads the requested number of blocks from the device. All the blocks are read, or an error is returned. If EFI_DEVICE_ERROR, EFI_NO_MEDIA,_or EFI_MEDIA_CHANGED is returned and non-blocking I/O is being used, the Event associated with this request will not be signaled. @param[in] This Indicates a pointer to the calling context. @param[in] MediaId Id of the media, changes every time the media is replaced. @param[in] Lba The starting Logical Block Address to read from. @param[in, out] Token A pointer to the token associated with the transaction. @param[in] BufferSize Size of Buffer, must be a multiple of device block size. @param[out] Buffer A pointer to the destination buffer for the data. The caller is responsible for either having implicit or explicit ownership of the buffer. @retval EFI_SUCCESS The read request was queued if Token->Event is not NULL.The data was read correctly from the device if the Token->Event is NULL. @retval EFI_DEVICE_ERROR The device reported an error while performing the read. @retval EFI_NO_MEDIA There is no media in the device. @retval EFI_MEDIA_CHANGED The MediaId is not for the current media. @retval EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block size of the device. @retval EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not on proper alignment. @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. **/ EFI_STATUS EFIAPI NvmeBlockIoReadBlocksEx ( IN EFI_BLOCK_IO2_PROTOCOL *This, IN UINT32 MediaId, IN EFI_LBA Lba, IN OUT EFI_BLOCK_IO2_TOKEN *Token, IN UINTN BufferSize, OUT VOID *Buffer ) { NVME_DEVICE_PRIVATE_DATA *Device; EFI_STATUS Status; EFI_BLOCK_IO_MEDIA *Media; UINTN BlockSize; UINTN NumberOfBlocks; UINTN IoAlign; EFI_TPL OldTpl; // // Check parameters. // if (This == NULL) { return EFI_INVALID_PARAMETER; } Media = This->Media; if (MediaId != Media->MediaId) { return EFI_MEDIA_CHANGED; } if (Buffer == NULL) { return EFI_INVALID_PARAMETER; } if (BufferSize == 0) { if ((Token != NULL) && (Token->Event != NULL)) { Token->TransactionStatus = EFI_SUCCESS; gBS->SignalEvent (Token->Event); } return EFI_SUCCESS; } BlockSize = Media->BlockSize; if ((BufferSize % BlockSize) != 0) { return EFI_BAD_BUFFER_SIZE; } NumberOfBlocks = BufferSize / BlockSize; if ((Lba + NumberOfBlocks - 1) > Media->LastBlock) { return EFI_INVALID_PARAMETER; } IoAlign = Media->IoAlign; if ((IoAlign > 0) && (((UINTN)Buffer & (IoAlign - 1)) != 0)) { return EFI_INVALID_PARAMETER; } OldTpl = gBS->RaiseTPL (TPL_CALLBACK); Device = NVME_DEVICE_PRIVATE_DATA_FROM_BLOCK_IO2 (This); if ((Token != NULL) && (Token->Event != NULL)) { Token->TransactionStatus = EFI_SUCCESS; Status = NvmeAsyncRead (Device, Buffer, Lba, NumberOfBlocks, Token); } else { Status = NvmeRead (Device, Buffer, Lba, NumberOfBlocks); } gBS->RestoreTPL (OldTpl); return Status; } /** Write BufferSize bytes from Lba into Buffer. This function writes the requested number of blocks to the device. All blocks are written, or an error is returned.If EFI_DEVICE_ERROR, EFI_NO_MEDIA, EFI_WRITE_PROTECTED or EFI_MEDIA_CHANGED is returned and non-blocking I/O is being used, the Event associated with this request will not be signaled. @param[in] This Indicates a pointer to the calling context. @param[in] MediaId The media ID that the write request is for. @param[in] Lba The starting logical block address to be written. The caller is responsible for writing to only legitimate locations. @param[in, out] Token A pointer to the token associated with the transaction. @param[in] BufferSize Size of Buffer, must be a multiple of device block size. @param[in] Buffer A pointer to the source buffer for the data. @retval EFI_SUCCESS The write request was queued if Event is not NULL. The data was written correctly to the device if the Event is NULL. @retval EFI_WRITE_PROTECTED The device can not be written to. @retval EFI_NO_MEDIA There is no media in the device. @retval EFI_MEDIA_CHNAGED The MediaId does not matched the current device. @retval EFI_DEVICE_ERROR The device reported an error while performing the write. @retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device. @retval EFI_INVALID_PARAMETER The write request contains LBAs that are not valid, or the buffer is not on proper alignment. @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. **/ EFI_STATUS EFIAPI NvmeBlockIoWriteBlocksEx ( IN EFI_BLOCK_IO2_PROTOCOL *This, IN UINT32 MediaId, IN EFI_LBA Lba, IN OUT EFI_BLOCK_IO2_TOKEN *Token, IN UINTN BufferSize, IN VOID *Buffer ) { NVME_DEVICE_PRIVATE_DATA *Device; EFI_STATUS Status; EFI_BLOCK_IO_MEDIA *Media; UINTN BlockSize; UINTN NumberOfBlocks; UINTN IoAlign; EFI_TPL OldTpl; // // Check parameters. // if (This == NULL) { return EFI_INVALID_PARAMETER; } Media = This->Media; if (MediaId != Media->MediaId) { return EFI_MEDIA_CHANGED; } if (Buffer == NULL) { return EFI_INVALID_PARAMETER; } if (BufferSize == 0) { if ((Token != NULL) && (Token->Event != NULL)) { Token->TransactionStatus = EFI_SUCCESS; gBS->SignalEvent (Token->Event); } return EFI_SUCCESS; } BlockSize = Media->BlockSize; if ((BufferSize % BlockSize) != 0) { return EFI_BAD_BUFFER_SIZE; } NumberOfBlocks = BufferSize / BlockSize; if ((Lba + NumberOfBlocks - 1) > Media->LastBlock) { return EFI_INVALID_PARAMETER; } IoAlign = Media->IoAlign; if ((IoAlign > 0) && (((UINTN)Buffer & (IoAlign - 1)) != 0)) { return EFI_INVALID_PARAMETER; } OldTpl = gBS->RaiseTPL (TPL_CALLBACK); Device = NVME_DEVICE_PRIVATE_DATA_FROM_BLOCK_IO2 (This); if ((Token != NULL) && (Token->Event != NULL)) { Token->TransactionStatus = EFI_SUCCESS; Status = NvmeAsyncWrite (Device, Buffer, Lba, NumberOfBlocks, Token); } else { Status = NvmeWrite (Device, Buffer, Lba, NumberOfBlocks); } gBS->RestoreTPL (OldTpl); return Status; } /** Flush the Block Device. If EFI_DEVICE_ERROR, EFI_NO_MEDIA,_EFI_WRITE_PROTECTED or EFI_MEDIA_CHANGED is returned and non-blocking I/O is being used, the Event associated with this request will not be signaled. @param[in] This Indicates a pointer to the calling context. @param[in,out] Token A pointer to the token associated with the transaction. @retval EFI_SUCCESS The flush request was queued if Event is not NULL. All outstanding data was written correctly to the device if the Event is NULL. @retval EFI_DEVICE_ERROR The device reported an error while writting back the data. @retval EFI_WRITE_PROTECTED The device cannot be written to. @retval EFI_NO_MEDIA There is no media in the device. @retval EFI_MEDIA_CHANGED The MediaId is not for the current media. @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. **/ EFI_STATUS EFIAPI NvmeBlockIoFlushBlocksEx ( IN EFI_BLOCK_IO2_PROTOCOL *This, IN OUT EFI_BLOCK_IO2_TOKEN *Token ) { NVME_DEVICE_PRIVATE_DATA *Device; BOOLEAN IsEmpty; EFI_TPL OldTpl; // // Check parameters. // if (This == NULL) { return EFI_INVALID_PARAMETER; } Device = NVME_DEVICE_PRIVATE_DATA_FROM_BLOCK_IO2 (This); // // Wait for the asynchronous I/O queue to become empty. // while (TRUE) { OldTpl = gBS->RaiseTPL (TPL_NOTIFY); IsEmpty = IsListEmpty (&Device->AsyncQueue); gBS->RestoreTPL (OldTpl); if (IsEmpty) { break; } gBS->Stall (100); } // // Signal caller event // if ((Token != NULL) && (Token->Event != NULL)) { Token->TransactionStatus = EFI_SUCCESS; gBS->SignalEvent (Token->Event); } return EFI_SUCCESS; } /** Trust transfer data from/to NVMe device. This function performs one NVMe transaction to do a trust transfer from/to NVMe device. @param Private The pointer to the NVME_CONTROLLER_PRIVATE_DATA data structure. @param Buffer The pointer to the current transaction buffer. @param SecurityProtocolId The value of the "Security Protocol" parameter of the security protocol command to be sent. @param SecurityProtocolSpecificData The value of the "Security Protocol Specific" parameter of the security protocol command to be sent. @param TransferLength The block number or sector count of the transfer. @param IsTrustSend Indicates whether it is a trust send operation or not. @param Timeout The timeout, in 100ns units, to use for the execution of the security protocol command. A Timeout value of 0 means that this function will wait indefinitely for the security protocol command to execute. If Timeout is greater than zero, then this function will return EFI_TIMEOUT if the time required to execute the receive data command is greater than Timeout. @param TransferLengthOut A pointer to a buffer to store the size in bytes of the data written to the buffer. Ignore it when IsTrustSend is TRUE. @retval EFI_SUCCESS The data transfer is complete successfully. @return others Some error occurs when transferring data. **/ EFI_STATUS TrustTransferNvmeDevice ( IN OUT NVME_CONTROLLER_PRIVATE_DATA *Private, IN OUT VOID *Buffer, IN UINT8 SecurityProtocolId, IN UINT16 SecurityProtocolSpecificData, IN UINTN TransferLength, IN BOOLEAN IsTrustSend, IN UINT64 Timeout, OUT UINTN *TransferLengthOut ) { EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET CommandPacket; EFI_NVM_EXPRESS_COMMAND Command; EFI_NVM_EXPRESS_COMPLETION Completion; EFI_STATUS Status; UINT16 SpecificData; ZeroMem (&CommandPacket, sizeof (EFI_NVM_EXPRESS_PASS_THRU_COMMAND_PACKET)); ZeroMem (&Command, sizeof (EFI_NVM_EXPRESS_COMMAND)); ZeroMem (&Completion, sizeof (EFI_NVM_EXPRESS_COMPLETION)); CommandPacket.NvmeCmd = &Command; CommandPacket.NvmeCompletion = &Completion; // // Change Endianness of SecurityProtocolSpecificData // SpecificData = (((SecurityProtocolSpecificData << 8) & 0xFF00) | (SecurityProtocolSpecificData >> 8)); if (IsTrustSend) { Command.Cdw0.Opcode = NVME_ADMIN_SECURITY_SEND_CMD; CommandPacket.TransferBuffer = Buffer; CommandPacket.TransferLength = (UINT32)TransferLength; CommandPacket.NvmeCmd->Cdw10 = (UINT32)((SecurityProtocolId << 24) | (SpecificData << 8)); CommandPacket.NvmeCmd->Cdw11 = (UINT32)TransferLength; } else { Command.Cdw0.Opcode = NVME_ADMIN_SECURITY_RECEIVE_CMD; CommandPacket.TransferBuffer = Buffer; CommandPacket.TransferLength = (UINT32)TransferLength; CommandPacket.NvmeCmd->Cdw10 = (UINT32)((SecurityProtocolId << 24) | (SpecificData << 8)); CommandPacket.NvmeCmd->Cdw11 = (UINT32)TransferLength; } CommandPacket.NvmeCmd->Flags = CDW10_VALID | CDW11_VALID; CommandPacket.NvmeCmd->Nsid = NVME_CONTROLLER_ID; CommandPacket.CommandTimeout = Timeout; CommandPacket.QueueType = NVME_ADMIN_QUEUE; Status = Private->Passthru.PassThru ( &Private->Passthru, NVME_CONTROLLER_ID, &CommandPacket, NULL ); if (!IsTrustSend) { if (EFI_ERROR (Status)) { *TransferLengthOut = 0; } else { *TransferLengthOut = (UINTN)TransferLength; } } return Status; } /** Send a security protocol command to a device that receives data and/or the result of one or more commands sent by SendData. The ReceiveData function sends a security protocol command to the given MediaId. The security protocol command sent is defined by SecurityProtocolId and contains the security protocol specific data SecurityProtocolSpecificData. The function returns the data from the security protocol command in PayloadBuffer. For devices supporting the SCSI command set, the security protocol command is sent using the SECURITY PROTOCOL IN command defined in SPC-4. For devices supporting the ATA command set, the security protocol command is sent using one of the TRUSTED RECEIVE commands defined in ATA8-ACS if PayloadBufferSize is non-zero. If the PayloadBufferSize is zero, the security protocol command is sent using the Trusted Non-Data command defined in ATA8-ACS. If PayloadBufferSize is too small to store the available data from the security protocol command, the function shall copy PayloadBufferSize bytes into the PayloadBuffer and return EFI_WARN_BUFFER_TOO_SMALL. If PayloadBuffer or PayloadTransferSize is NULL and PayloadBufferSize is non-zero, the function shall return EFI_INVALID_PARAMETER. If the given MediaId does not support security protocol commands, the function shall return EFI_UNSUPPORTED. If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the ID for the current media in the device, the function returns EFI_MEDIA_CHANGED. If the security protocol fails to complete within the Timeout period, the function shall return EFI_TIMEOUT. If the security protocol command completes without an error, the function shall return EFI_SUCCESS. If the security protocol command completes with an error, the function shall return EFI_DEVICE_ERROR. @param This Indicates a pointer to the calling context. @param MediaId ID of the medium to receive data from. If there is no block IO protocol supported by the physical device, the value of MediaId is undefined. @param Timeout The timeout, in 100ns units, to use for the execution of the security protocol command. A Timeout value of 0 means that this function will wait indefinitely for the security protocol command to execute. If Timeout is greater than zero, then this function will return EFI_TIMEOUT if the time required to execute the receive data command is greater than Timeout. @param SecurityProtocolId The value of the "Security Protocol" parameter of the security protocol command to be sent. @param SecurityProtocolSpecificData The value of the "Security Protocol Specific" parameter of the security protocol command to be sent. @param PayloadBufferSize Size in bytes of the payload data buffer. @param PayloadBuffer A pointer to a destination buffer to store the security protocol command specific payload data for the security protocol command. The caller is responsible for having either implicit or explicit ownership of the buffer. @param PayloadTransferSize A pointer to a buffer to store the size in bytes of the data written to the payload data buffer. @retval EFI_SUCCESS The security protocol command completed successfully. @retval EFI_WARN_BUFFER_TOO_SMALL The PayloadBufferSize was too small to store the available data from the device. The PayloadBuffer contains the truncated data. @retval EFI_UNSUPPORTED The given MediaId does not support security protocol commands. @retval EFI_DEVICE_ERROR The security protocol command completed with an error. @retval EFI_NO_MEDIA There is no media in the device. @retval EFI_MEDIA_CHANGED The MediaId is not for the current media. @retval EFI_INVALID_PARAMETER The PayloadBuffer or PayloadTransferSize is NULL and PayloadBufferSize is non-zero. @retval EFI_TIMEOUT A timeout occurred while waiting for the security protocol command to execute. **/ EFI_STATUS EFIAPI NvmeStorageSecurityReceiveData ( IN EFI_STORAGE_SECURITY_COMMAND_PROTOCOL *This, IN UINT32 MediaId, IN UINT64 Timeout, IN UINT8 SecurityProtocolId, IN UINT16 SecurityProtocolSpecificData, IN UINTN PayloadBufferSize, OUT VOID *PayloadBuffer, OUT UINTN *PayloadTransferSize ) { EFI_STATUS Status; NVME_DEVICE_PRIVATE_DATA *Device; Status = EFI_SUCCESS; if ((PayloadBuffer == NULL) || (PayloadTransferSize == NULL) || (PayloadBufferSize == 0)) { return EFI_INVALID_PARAMETER; } Device = NVME_DEVICE_PRIVATE_DATA_FROM_STORAGE_SECURITY (This); if (MediaId != Device->BlockIo.Media->MediaId) { return EFI_MEDIA_CHANGED; } if (!Device->BlockIo.Media->MediaPresent) { return EFI_NO_MEDIA; } Status = TrustTransferNvmeDevice ( Device->Controller, PayloadBuffer, SecurityProtocolId, SecurityProtocolSpecificData, PayloadBufferSize, FALSE, Timeout, PayloadTransferSize ); return Status; } /** Send a security protocol command to a device. The SendData function sends a security protocol command containing the payload PayloadBuffer to the given MediaId. The security protocol command sent is defined by SecurityProtocolId and contains the security protocol specific data SecurityProtocolSpecificData. If the underlying protocol command requires a specific padding for the command payload, the SendData function shall add padding bytes to the command payload to satisfy the padding requirements. For devices supporting the SCSI command set, the security protocol command is sent using the SECURITY PROTOCOL OUT command defined in SPC-4. For devices supporting the ATA command set, the security protocol command is sent using one of the TRUSTED SEND commands defined in ATA8-ACS if PayloadBufferSize is non-zero. If the PayloadBufferSize is zero, the security protocol command is sent using the Trusted Non-Data command defined in ATA8-ACS. If PayloadBuffer is NULL and PayloadBufferSize is non-zero, the function shall return EFI_INVALID_PARAMETER. If the given MediaId does not support security protocol commands, the function shall return EFI_UNSUPPORTED. If there is no media in the device, the function returns EFI_NO_MEDIA. If the MediaId is not the ID for the current media in the device, the function returns EFI_MEDIA_CHANGED. If the security protocol fails to complete within the Timeout period, the function shall return EFI_TIMEOUT. If the security protocol command completes without an error, the function shall return EFI_SUCCESS. If the security protocol command completes with an error, the function shall return EFI_DEVICE_ERROR. @param This Indicates a pointer to the calling context. @param MediaId ID of the medium to receive data from. If there is no block IO protocol supported by the physical device, the value of MediaId is undefined. @param Timeout The timeout, in 100ns units, to use for the execution of the security protocol command. A Timeout value of 0 means that this function will wait indefinitely for the security protocol command to execute. If Timeout is greater than zero, then this function will return EFI_TIMEOUT if the time required to execute the send data command is greater than Timeout. @param SecurityProtocolId The value of the "Security Protocol" parameter of the security protocol command to be sent. @param SecurityProtocolSpecificData The value of the "Security Protocol Specific" parameter of the security protocol command to be sent. @param PayloadBufferSize Size in bytes of the payload data buffer. @param PayloadBuffer A pointer to a destination buffer to store the security protocol command specific payload data for the security protocol command. @retval EFI_SUCCESS The security protocol command completed successfully. @retval EFI_UNSUPPORTED The given MediaId does not support security protocol commands. @retval EFI_DEVICE_ERROR The security protocol command completed with an error. @retval EFI_NO_MEDIA There is no media in the device. @retval EFI_MEDIA_CHANGED The MediaId is not for the current media. @retval EFI_INVALID_PARAMETER The PayloadBuffer is NULL and PayloadBufferSize is non-zero. @retval EFI_TIMEOUT A timeout occurred while waiting for the security protocol command to execute. **/ EFI_STATUS EFIAPI NvmeStorageSecuritySendData ( IN EFI_STORAGE_SECURITY_COMMAND_PROTOCOL *This, IN UINT32 MediaId, IN UINT64 Timeout, IN UINT8 SecurityProtocolId, IN UINT16 SecurityProtocolSpecificData, IN UINTN PayloadBufferSize, IN VOID *PayloadBuffer ) { EFI_STATUS Status; NVME_DEVICE_PRIVATE_DATA *Device; Status = EFI_SUCCESS; if ((PayloadBuffer == NULL) && (PayloadBufferSize != 0)) { return EFI_INVALID_PARAMETER; } Device = NVME_DEVICE_PRIVATE_DATA_FROM_STORAGE_SECURITY (This); if (MediaId != Device->BlockIo.Media->MediaId) { return EFI_MEDIA_CHANGED; } if (!Device->BlockIo.Media->MediaPresent) { return EFI_NO_MEDIA; } Status = TrustTransferNvmeDevice ( Device->Controller, PayloadBuffer, SecurityProtocolId, SecurityProtocolSpecificData, PayloadBufferSize, TRUE, Timeout, NULL ); return Status; }