/** @file Provides definitions and functionality for manipulating IMAGE_PROPERTIES_RECORD. Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.
Copyright (c) Microsoft Corporation. SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include #include #include #include #include #include #include #define PREVIOUS_MEMORY_DESCRIPTOR(MemoryDescriptor, Size) \ ((EFI_MEMORY_DESCRIPTOR *)((UINT8 *)(MemoryDescriptor) - (Size))) #define NEXT_MEMORY_DESCRIPTOR(MemoryDescriptor, Size) \ ((EFI_MEMORY_DESCRIPTOR *)((UINT8 *)(MemoryDescriptor) + (Size))) /** Converts a number of pages to a size in bytes. NOTE: Do not use EFI_PAGES_TO_SIZE because it handles UINTN only. @param[in] Pages The number of EFI_PAGES. @retval The number of bytes associated with the input number of pages. **/ STATIC UINT64 EfiPagesToSize ( IN UINT64 Pages ) { return LShiftU64 (Pages, EFI_PAGE_SHIFT); } /** Converts a size, in bytes, to a number of EFI_PAGESs. NOTE: Do not use EFI_SIZE_TO_PAGES because it handles UINTN only. @param[in] Size A size in bytes. @retval The number of pages associated with the input number of bytes. **/ STATIC UINT64 EfiSizeToPages ( IN UINT64 Size ) { return RShiftU64 (Size, EFI_PAGE_SHIFT) + ((((UINTN)Size) & EFI_PAGE_MASK) ? 1 : 0); } /** Frees the memory for each ImageRecordCodeSection within an ImageRecord and removes the entries from the list. It does not free the ImageRecord itself. @param[in] ImageRecord The ImageRecord in which to free code sections **/ STATIC VOID FreeImageRecordCodeSections ( IMAGE_PROPERTIES_RECORD *ImageRecord ) { LIST_ENTRY *CodeSegmentListHead; IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection; if (ImageRecord == NULL) { return; } CodeSegmentListHead = &ImageRecord->CodeSegmentList; while (!IsListEmpty (CodeSegmentListHead)) { ImageRecordCodeSection = CR ( CodeSegmentListHead->ForwardLink, IMAGE_PROPERTIES_RECORD_CODE_SECTION, Link, IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE ); RemoveEntryList (&ImageRecordCodeSection->Link); FreePool (ImageRecordCodeSection); } } /** Sort memory map entries based upon PhysicalStart from low to high. @param[in, out] MemoryMap A pointer to the buffer in which firmware places the current memory map. @param[in] MemoryMapSize Size, in bytes, of the MemoryMap buffer. @param[in] DescriptorSize Size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR. **/ STATIC VOID SortMemoryMap ( IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap, IN UINTN MemoryMapSize, IN UINTN DescriptorSize ) { EFI_MEMORY_DESCRIPTOR *MemoryMapEntry; EFI_MEMORY_DESCRIPTOR *NextMemoryMapEntry; EFI_MEMORY_DESCRIPTOR *MemoryMapEnd; EFI_MEMORY_DESCRIPTOR TempMemoryMap; MemoryMapEntry = MemoryMap; NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize); MemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMap + MemoryMapSize); while (MemoryMapEntry < MemoryMapEnd) { while (NextMemoryMapEntry < MemoryMapEnd) { if (MemoryMapEntry->PhysicalStart > NextMemoryMapEntry->PhysicalStart) { CopyMem (&TempMemoryMap, MemoryMapEntry, sizeof (EFI_MEMORY_DESCRIPTOR)); CopyMem (MemoryMapEntry, NextMemoryMapEntry, sizeof (EFI_MEMORY_DESCRIPTOR)); CopyMem (NextMemoryMapEntry, &TempMemoryMap, sizeof (EFI_MEMORY_DESCRIPTOR)); } NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (NextMemoryMapEntry, DescriptorSize); } MemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize); NextMemoryMapEntry = NEXT_MEMORY_DESCRIPTOR (MemoryMapEntry, DescriptorSize); } return; } /** Return the first image record, whose [ImageBase, ImageSize] covered by [Buffer, Length]. @param[in] Buffer Starting Address @param[in] Length Length to check @param[in] ImageRecordList A list of IMAGE_PROPERTIES_RECORD entries to check against the memory range Buffer -> Buffer + Length @retval The first image record covered by [Buffer, Length] **/ STATIC IMAGE_PROPERTIES_RECORD * GetImageRecordByAddress ( IN EFI_PHYSICAL_ADDRESS Buffer, IN UINT64 Length, IN LIST_ENTRY *ImageRecordList ) { IMAGE_PROPERTIES_RECORD *ImageRecord; LIST_ENTRY *ImageRecordLink; for (ImageRecordLink = ImageRecordList->ForwardLink; ImageRecordLink != ImageRecordList; ImageRecordLink = ImageRecordLink->ForwardLink) { ImageRecord = CR ( ImageRecordLink, IMAGE_PROPERTIES_RECORD, Link, IMAGE_PROPERTIES_RECORD_SIGNATURE ); if ((Buffer <= ImageRecord->ImageBase) && (Buffer + Length >= ImageRecord->ImageBase + ImageRecord->ImageSize)) { return ImageRecord; } } return NULL; } /** Break up the input OldRecord into multiple new records based on the code and data sections in the input ImageRecord. @param[in] ImageRecord An IMAGE_PROPERTIES_RECORD whose ImageBase and ImageSize is covered by by OldRecord. @param[in, out] NewRecord A pointer to several new memory map entries. The caller gurantee the buffer size be 1 + (SplitRecordCount * DescriptorSize) calculated below. @param[in] OldRecord A pointer to one old memory map entry. @param[in] DescriptorSize The size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR. @retval The number of new descriptors created. **/ STATIC UINTN SetNewRecord ( IN IMAGE_PROPERTIES_RECORD *ImageRecord, IN OUT EFI_MEMORY_DESCRIPTOR *NewRecord, IN EFI_MEMORY_DESCRIPTOR *OldRecord, IN UINTN DescriptorSize ) { EFI_MEMORY_DESCRIPTOR TempRecord; IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection; LIST_ENTRY *ImageRecordCodeSectionLink; LIST_ENTRY *ImageRecordCodeSectionEndLink; LIST_ENTRY *ImageRecordCodeSectionList; UINTN NewRecordCount; UINT64 PhysicalEnd; UINT64 ImageEnd; CopyMem (&TempRecord, OldRecord, sizeof (EFI_MEMORY_DESCRIPTOR)); PhysicalEnd = TempRecord.PhysicalStart + EfiPagesToSize (TempRecord.NumberOfPages); NewRecordCount = 0; ImageRecordCodeSectionList = &ImageRecord->CodeSegmentList; ImageRecordCodeSectionLink = ImageRecordCodeSectionList->ForwardLink; ImageRecordCodeSectionEndLink = ImageRecordCodeSectionList; while (ImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) { ImageRecordCodeSection = CR ( ImageRecordCodeSectionLink, IMAGE_PROPERTIES_RECORD_CODE_SECTION, Link, IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE ); ImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink; if (TempRecord.PhysicalStart <= ImageRecordCodeSection->CodeSegmentBase) { // // DATA // NewRecord->Type = TempRecord.Type; NewRecord->PhysicalStart = TempRecord.PhysicalStart; NewRecord->VirtualStart = 0; NewRecord->NumberOfPages = EfiSizeToPages (ImageRecordCodeSection->CodeSegmentBase - NewRecord->PhysicalStart); NewRecord->Attribute = TempRecord.Attribute | EFI_MEMORY_XP; if (NewRecord->NumberOfPages != 0) { NewRecord = NEXT_MEMORY_DESCRIPTOR (NewRecord, DescriptorSize); NewRecordCount++; } // // CODE // NewRecord->Type = TempRecord.Type; NewRecord->PhysicalStart = ImageRecordCodeSection->CodeSegmentBase; NewRecord->VirtualStart = 0; NewRecord->NumberOfPages = EfiSizeToPages (ImageRecordCodeSection->CodeSegmentSize); NewRecord->Attribute = (TempRecord.Attribute & (~EFI_MEMORY_XP)) | EFI_MEMORY_RO; if (NewRecord->NumberOfPages != 0) { NewRecord = NEXT_MEMORY_DESCRIPTOR (NewRecord, DescriptorSize); NewRecordCount++; } TempRecord.PhysicalStart = ImageRecordCodeSection->CodeSegmentBase + EfiPagesToSize (EfiSizeToPages (ImageRecordCodeSection->CodeSegmentSize)); TempRecord.NumberOfPages = EfiSizeToPages (PhysicalEnd - TempRecord.PhysicalStart); if (TempRecord.NumberOfPages == 0) { break; } } } ImageEnd = ImageRecord->ImageBase + ImageRecord->ImageSize; // // Final DATA // if (TempRecord.PhysicalStart < ImageEnd) { NewRecord->Type = TempRecord.Type; NewRecord->PhysicalStart = TempRecord.PhysicalStart; NewRecord->VirtualStart = 0; NewRecord->NumberOfPages = EfiSizeToPages (ImageEnd - TempRecord.PhysicalStart); NewRecord->Attribute = TempRecord.Attribute | EFI_MEMORY_XP; NewRecordCount++; } return NewRecordCount; } /** Return the maximum number of new entries required to describe the code and data sections of all images covered by the input OldRecord. @param[in] OldRecord A pointer to one old memory map entry. @param[in] ImageRecordList A list of IMAGE_PROPERTIES_RECORD entries used when searching for an image record contained by the memory range described by OldRecord @retval The maximum number of new descriptors required to describe the code and data sections of all images covered by OldRecord. **/ STATIC UINTN GetMaxSplitRecordCount ( IN EFI_MEMORY_DESCRIPTOR *OldRecord, IN LIST_ENTRY *ImageRecordList ) { IMAGE_PROPERTIES_RECORD *ImageRecord; UINTN SplitRecordCount; UINT64 PhysicalStart; UINT64 PhysicalEnd; SplitRecordCount = 0; PhysicalStart = OldRecord->PhysicalStart; PhysicalEnd = OldRecord->PhysicalStart + EfiPagesToSize (OldRecord->NumberOfPages); do { ImageRecord = GetImageRecordByAddress (PhysicalStart, PhysicalEnd - PhysicalStart, ImageRecordList); if (ImageRecord == NULL) { break; } SplitRecordCount += (2 * ImageRecord->CodeSegmentCount + 3); PhysicalStart = ImageRecord->ImageBase + ImageRecord->ImageSize; } while ((ImageRecord != NULL) && (PhysicalStart < PhysicalEnd)); if (SplitRecordCount != 0) { SplitRecordCount--; } return SplitRecordCount; } /** Split the memory map into new entries based upon the PE code and data sections in ImageRecordList covered by the input OldRecord. @param[in] OldRecord A pointer to one old memory map entry. @param[in, out] NewRecord A pointer to several new memory map entries. The caller gurantee the buffer size be (SplitRecordCount * DescriptorSize). @param[in] MaxSplitRecordCount The maximum number of entries post-split. @param[in] DescriptorSize The size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR. @param[in] ImageRecordList A list of IMAGE_PROPERTIES_RECORD entries used when searching for an image record contained by the memory range described in the existing EFI memory map descriptor OldRecord @retval The number of split entries. **/ STATIC UINTN SplitRecord ( IN EFI_MEMORY_DESCRIPTOR *OldRecord, IN OUT EFI_MEMORY_DESCRIPTOR *NewRecord, IN UINTN MaxSplitRecordCount, IN UINTN DescriptorSize, IN LIST_ENTRY *ImageRecordList ) { EFI_MEMORY_DESCRIPTOR TempRecord; IMAGE_PROPERTIES_RECORD *ImageRecord; IMAGE_PROPERTIES_RECORD *NewImageRecord; UINT64 PhysicalStart; UINT64 PhysicalEnd; UINTN NewRecordCount; UINTN TotalNewRecordCount; if (MaxSplitRecordCount == 0) { CopyMem (NewRecord, OldRecord, DescriptorSize); return 0; } TotalNewRecordCount = 0; // // Override previous record // CopyMem (&TempRecord, OldRecord, sizeof (EFI_MEMORY_DESCRIPTOR)); PhysicalStart = TempRecord.PhysicalStart; PhysicalEnd = TempRecord.PhysicalStart + EfiPagesToSize (TempRecord.NumberOfPages); ImageRecord = NULL; do { NewImageRecord = GetImageRecordByAddress (PhysicalStart, PhysicalEnd - PhysicalStart, ImageRecordList); if (NewImageRecord == NULL) { // // No more images cover this range, check if we've reached the end of the old descriptor. If not, // add the remaining range to the new descriptor list. // if (PhysicalEnd > PhysicalStart) { NewRecord->Type = TempRecord.Type; NewRecord->PhysicalStart = PhysicalStart; NewRecord->VirtualStart = 0; NewRecord->NumberOfPages = EfiSizeToPages (PhysicalEnd - PhysicalStart); NewRecord->Attribute = TempRecord.Attribute; TotalNewRecordCount++; } break; } ImageRecord = NewImageRecord; // // Update PhysicalStart to exclude the portion before the image buffer // if (TempRecord.PhysicalStart < ImageRecord->ImageBase) { NewRecord->Type = TempRecord.Type; NewRecord->PhysicalStart = TempRecord.PhysicalStart; NewRecord->VirtualStart = 0; NewRecord->NumberOfPages = EfiSizeToPages (ImageRecord->ImageBase - TempRecord.PhysicalStart); NewRecord->Attribute = TempRecord.Attribute; TotalNewRecordCount++; PhysicalStart = ImageRecord->ImageBase; TempRecord.PhysicalStart = PhysicalStart; TempRecord.NumberOfPages = EfiSizeToPages (PhysicalEnd - PhysicalStart); NewRecord = (EFI_MEMORY_DESCRIPTOR *)((UINT8 *)NewRecord + DescriptorSize); } // // Set new record // NewRecordCount = SetNewRecord (ImageRecord, NewRecord, &TempRecord, DescriptorSize); TotalNewRecordCount += NewRecordCount; NewRecord = (EFI_MEMORY_DESCRIPTOR *)((UINT8 *)NewRecord + NewRecordCount * DescriptorSize); // // Update PhysicalStart, in order to exclude the image buffer already splitted. // PhysicalStart = ImageRecord->ImageBase + ImageRecord->ImageSize; TempRecord.PhysicalStart = PhysicalStart; TempRecord.NumberOfPages = EfiSizeToPages (PhysicalEnd - PhysicalStart); } while ((ImageRecord != NULL) && (PhysicalStart < PhysicalEnd)); // // The logic in function SplitTable() ensures that TotalNewRecordCount will not be zero if the // code reaches here. // ASSERT (TotalNewRecordCount != 0); return TotalNewRecordCount - 1; } /** Split the original memory map and add more entries to describe PE code and data sections for each image in the input ImageRecordList. NOTE: This function assumes PE code/data section are page aligned. NOTE: This function assumes there are enough entries for the new memory map. | | | | | | | | | 4K PAGE | DATA | CODE | DATA | CODE | DATA | 4K PAGE | | | | | | | | | Assume the above memory region is the result of one split memory map descriptor. It's unlikely that a linker will orient an image this way, but the caller must assume the worst case scenario. This image layout example contains code sections oriented in a way that maximizes the number of descriptors which would be required to describe each section. To ensure we have enough space for every descriptor of the broken up memory map, the caller must assume that every image will have the maximum number of code sections oriented in a way which maximizes the number of data sections with unrelated memory regions flanking each image within a single descriptor. Given an image record list, the caller should use the following formula when allocating extra descriptors: NumberOfAdditionalDescriptors = (MemoryMapSize / DescriptorSize) + ((2 * + 3) * ) @param[in, out] MemoryMapSize IN: The size, in bytes, of the old memory map before the split. OUT: The size, in bytes, of the used descriptors of the split memory map @param[in, out] MemoryMap IN: A pointer to the buffer containing the current memory map. This buffer must have enough space to accomodate the "worst case" scenario where every image in ImageRecordList needs a new descriptor to describe its code and data sections. OUT: A pointer to the updated memory map with separated image section descriptors. @param[in] DescriptorSize The size, in bytes, of an individual EFI_MEMORY_DESCRIPTOR. @param[in] ImageRecordList A list of IMAGE_PROPERTIES_RECORD entries used when searching for an image record contained by the memory range described in EFI memory map descriptors. @param[in] NumberOfAdditionalDescriptors The number of unused descriptors at the end of the input MemoryMap. The formula in the description should be used to calculate this value. @retval EFI_SUCCESS The memory map was successfully split. @retval EFI_INVALID_PARAMETER MemoryMapSize, MemoryMap, or ImageRecordList was NULL. **/ EFI_STATUS EFIAPI SplitTable ( IN OUT UINTN *MemoryMapSize, IN OUT EFI_MEMORY_DESCRIPTOR *MemoryMap, IN UINTN DescriptorSize, IN LIST_ENTRY *ImageRecordList, IN UINTN NumberOfAdditionalDescriptors ) { INTN IndexOld; INTN IndexNew; INTN IndexNewStarting; UINTN MaxSplitRecordCount; UINTN RealSplitRecordCount; UINTN TotalSkippedRecords; if ((MemoryMapSize == NULL) || (MemoryMap == NULL) || (ImageRecordList == NULL)) { return EFI_INVALID_PARAMETER; } TotalSkippedRecords = 0; // // Let old record point to end of valid MemoryMap buffer. // IndexOld = ((*MemoryMapSize) / DescriptorSize) - 1; // // Let new record point to end of full MemoryMap buffer. // IndexNew = ((*MemoryMapSize) / DescriptorSize) - 1 + NumberOfAdditionalDescriptors; IndexNewStarting = IndexNew; for ( ; IndexOld >= 0; IndexOld--) { MaxSplitRecordCount = GetMaxSplitRecordCount ((EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMap + IndexOld * DescriptorSize), ImageRecordList); // // Split this MemoryMap record // IndexNew -= MaxSplitRecordCount; RealSplitRecordCount = SplitRecord ( (EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMap + IndexOld * DescriptorSize), (EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMap + IndexNew * DescriptorSize), MaxSplitRecordCount, DescriptorSize, ImageRecordList ); // If we didn't utilize all the extra allocated descriptor slots, set the physical address of the unused slots // to MAX_ADDRESS so they are moved to the bottom of the list when sorting. for ( ; RealSplitRecordCount < MaxSplitRecordCount; RealSplitRecordCount++) { ((EFI_MEMORY_DESCRIPTOR *)((UINT8 *)MemoryMap + ((IndexNew + RealSplitRecordCount + 1) * DescriptorSize)))->PhysicalStart = MAX_ADDRESS; TotalSkippedRecords++; } IndexNew--; } // // Move all records to the beginning. // CopyMem ( MemoryMap, (UINT8 *)MemoryMap + ((IndexNew + 1) * DescriptorSize), (IndexNewStarting - IndexNew) * DescriptorSize ); // // Sort from low to high to filter out the MAX_ADDRESS records. // SortMemoryMap (MemoryMap, (IndexNewStarting - IndexNew) * DescriptorSize, DescriptorSize); *MemoryMapSize = (IndexNewStarting - IndexNew - TotalSkippedRecords) * DescriptorSize; return EFI_SUCCESS; } /** Swap two code sections in a single IMAGE_PROPERTIES_RECORD. @param[in] FirstImageRecordCodeSection The first code section @param[in] SecondImageRecordCodeSection The second code section @retval EFI_SUCCESS The code sections were swapped successfully @retval EFI_INVALID_PARAMETER FirstImageRecordCodeSection or SecondImageRecordCodeSection is NULL **/ EFI_STATUS EFIAPI SwapImageRecordCodeSection ( IN IMAGE_PROPERTIES_RECORD_CODE_SECTION *FirstImageRecordCodeSection, IN IMAGE_PROPERTIES_RECORD_CODE_SECTION *SecondImageRecordCodeSection ) { IMAGE_PROPERTIES_RECORD_CODE_SECTION TempImageRecordCodeSection; if ((FirstImageRecordCodeSection == NULL) || (SecondImageRecordCodeSection == NULL)) { return EFI_INVALID_PARAMETER; } TempImageRecordCodeSection.CodeSegmentBase = FirstImageRecordCodeSection->CodeSegmentBase; TempImageRecordCodeSection.CodeSegmentSize = FirstImageRecordCodeSection->CodeSegmentSize; FirstImageRecordCodeSection->CodeSegmentBase = SecondImageRecordCodeSection->CodeSegmentBase; FirstImageRecordCodeSection->CodeSegmentSize = SecondImageRecordCodeSection->CodeSegmentSize; SecondImageRecordCodeSection->CodeSegmentBase = TempImageRecordCodeSection.CodeSegmentBase; SecondImageRecordCodeSection->CodeSegmentSize = TempImageRecordCodeSection.CodeSegmentSize; return EFI_SUCCESS; } /** Sort the code sections in the input ImageRecord based upon CodeSegmentBase from low to high. @param[in] ImageRecord IMAGE_PROPERTIES_RECORD to be sorted @retval EFI_SUCCESS The code sections in the input ImageRecord were sorted successfully @retval EFI_ABORTED An error occurred while sorting the code sections in the input ImageRecord @retval EFI_INVALID_PARAMETER ImageRecord is NULL **/ EFI_STATUS EFIAPI SortImageRecordCodeSection ( IN IMAGE_PROPERTIES_RECORD *ImageRecord ) { EFI_STATUS Status; IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection; IMAGE_PROPERTIES_RECORD_CODE_SECTION *NextImageRecordCodeSection; LIST_ENTRY *ImageRecordCodeSectionLink; LIST_ENTRY *NextImageRecordCodeSectionLink; LIST_ENTRY *ImageRecordCodeSectionEndLink; LIST_ENTRY *ImageRecordCodeSectionList; if (ImageRecord == NULL) { return EFI_INVALID_PARAMETER; } ImageRecordCodeSectionList = &ImageRecord->CodeSegmentList; ImageRecordCodeSectionLink = ImageRecordCodeSectionList->ForwardLink; NextImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink; ImageRecordCodeSectionEndLink = ImageRecordCodeSectionList; while (ImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) { ImageRecordCodeSection = CR ( ImageRecordCodeSectionLink, IMAGE_PROPERTIES_RECORD_CODE_SECTION, Link, IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE ); while (NextImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) { NextImageRecordCodeSection = CR ( NextImageRecordCodeSectionLink, IMAGE_PROPERTIES_RECORD_CODE_SECTION, Link, IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE ); if (ImageRecordCodeSection->CodeSegmentBase > NextImageRecordCodeSection->CodeSegmentBase) { Status = SwapImageRecordCodeSection (ImageRecordCodeSection, NextImageRecordCodeSection); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return EFI_ABORTED; } } NextImageRecordCodeSectionLink = NextImageRecordCodeSectionLink->ForwardLink; } ImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink; NextImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink; } return EFI_SUCCESS; } /** Check if the code sections in the input ImageRecord are valid. The code sections are valid if they don't overlap, are contained within the the ImageRecord's ImageBase and ImageSize, and are contained within the MAX_ADDRESS. @param[in] ImageRecord IMAGE_PROPERTIES_RECORD to be checked @retval TRUE The code sections in the input ImageRecord are valid @retval FALSE The code sections in the input ImageRecord are invalid **/ BOOLEAN EFIAPI IsImageRecordCodeSectionValid ( IN IMAGE_PROPERTIES_RECORD *ImageRecord ) { IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection; IMAGE_PROPERTIES_RECORD_CODE_SECTION *LastImageRecordCodeSection; LIST_ENTRY *ImageRecordCodeSectionLink; LIST_ENTRY *ImageRecordCodeSectionEndLink; LIST_ENTRY *ImageRecordCodeSectionList; if (ImageRecord == NULL) { return FALSE; } DEBUG ((DEBUG_VERBOSE, "ImageCode SegmentCount - 0x%x\n", ImageRecord->CodeSegmentCount)); ImageRecordCodeSectionList = &ImageRecord->CodeSegmentList; ImageRecordCodeSectionLink = ImageRecordCodeSectionList->ForwardLink; ImageRecordCodeSectionEndLink = ImageRecordCodeSectionList; LastImageRecordCodeSection = NULL; while (ImageRecordCodeSectionLink != ImageRecordCodeSectionEndLink) { ImageRecordCodeSection = CR ( ImageRecordCodeSectionLink, IMAGE_PROPERTIES_RECORD_CODE_SECTION, Link, IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE ); if (ImageRecordCodeSection->CodeSegmentSize == 0) { return FALSE; } if (ImageRecordCodeSection->CodeSegmentBase < ImageRecord->ImageBase) { return FALSE; } if (ImageRecordCodeSection->CodeSegmentBase >= MAX_ADDRESS - ImageRecordCodeSection->CodeSegmentSize) { return FALSE; } if ((ImageRecordCodeSection->CodeSegmentBase + ImageRecordCodeSection->CodeSegmentSize) > (ImageRecord->ImageBase + ImageRecord->ImageSize)) { return FALSE; } if (LastImageRecordCodeSection != NULL) { if ((LastImageRecordCodeSection->CodeSegmentBase + LastImageRecordCodeSection->CodeSegmentSize) > ImageRecordCodeSection->CodeSegmentBase) { return FALSE; } } LastImageRecordCodeSection = ImageRecordCodeSection; ImageRecordCodeSectionLink = ImageRecordCodeSectionLink->ForwardLink; } return TRUE; } /** Swap two image records. @param[in] FirstImageRecord The first image record. @param[in] SecondImageRecord The second image record. @retval EFI_SUCCESS The image records were swapped successfully @retval EFI_INVALID_PARAMETER FirstImageRecord or SecondImageRecord is NULL **/ EFI_STATUS EFIAPI SwapImageRecord ( IN IMAGE_PROPERTIES_RECORD *FirstImageRecord, IN IMAGE_PROPERTIES_RECORD *SecondImageRecord ) { IMAGE_PROPERTIES_RECORD TempImageRecord; if ((FirstImageRecord == NULL) || (SecondImageRecord == NULL)) { return EFI_INVALID_PARAMETER; } TempImageRecord.ImageBase = FirstImageRecord->ImageBase; TempImageRecord.ImageSize = FirstImageRecord->ImageSize; TempImageRecord.CodeSegmentCount = FirstImageRecord->CodeSegmentCount; FirstImageRecord->ImageBase = SecondImageRecord->ImageBase; FirstImageRecord->ImageSize = SecondImageRecord->ImageSize; FirstImageRecord->CodeSegmentCount = SecondImageRecord->CodeSegmentCount; SecondImageRecord->ImageBase = TempImageRecord.ImageBase; SecondImageRecord->ImageSize = TempImageRecord.ImageSize; SecondImageRecord->CodeSegmentCount = TempImageRecord.CodeSegmentCount; SwapListEntries (&FirstImageRecord->CodeSegmentList, &SecondImageRecord->CodeSegmentList); return EFI_SUCCESS; } /** Sort the input ImageRecordList based upon the ImageBase from low to high. @param[in] ImageRecordList Image record list to be sorted @retval EFI_SUCCESS The image record list was sorted successfully @retval EFI_ABORTED An error occurred while sorting the image record list @retval EFI_INVALID_PARAMETER ImageRecordList is NULL **/ EFI_STATUS EFIAPI SortImageRecord ( IN LIST_ENTRY *ImageRecordList ) { IMAGE_PROPERTIES_RECORD *ImageRecord; IMAGE_PROPERTIES_RECORD *NextImageRecord; LIST_ENTRY *ImageRecordLink; LIST_ENTRY *NextImageRecordLink; LIST_ENTRY *ImageRecordEndLink; EFI_STATUS Status; if (ImageRecordList == NULL) { return EFI_INVALID_PARAMETER; } ImageRecordLink = ImageRecordList->ForwardLink; NextImageRecordLink = ImageRecordLink->ForwardLink; ImageRecordEndLink = ImageRecordList; while (ImageRecordLink != ImageRecordEndLink) { ImageRecord = CR ( ImageRecordLink, IMAGE_PROPERTIES_RECORD, Link, IMAGE_PROPERTIES_RECORD_SIGNATURE ); while (NextImageRecordLink != ImageRecordEndLink) { NextImageRecord = CR ( NextImageRecordLink, IMAGE_PROPERTIES_RECORD, Link, IMAGE_PROPERTIES_RECORD_SIGNATURE ); if (ImageRecord->ImageBase > NextImageRecord->ImageBase) { Status = SwapImageRecord (ImageRecord, NextImageRecord); if (EFI_ERROR (Status)) { ASSERT_EFI_ERROR (Status); return EFI_ABORTED; } } NextImageRecordLink = NextImageRecordLink->ForwardLink; } ImageRecordLink = ImageRecordLink->ForwardLink; NextImageRecordLink = ImageRecordLink->ForwardLink; } return EFI_SUCCESS; } /** Extract the .efi filename out of the input PDB. @param[in] PdbPointer Pointer to the PDB file path. @param[out] EfiFileName Pointer to the .efi filename. @param[in] EfiFileNameSize Size of the .efi filename buffer. **/ STATIC VOID GetFilename ( IN CHAR8 *PdbPointer, OUT CHAR8 *EfiFileName, IN UINTN EfiFileNameSize ) { UINTN Index; UINTN StartIndex; if ((PdbPointer == NULL) || (EfiFileNameSize < 5)) { return; } // Print Module Name by Pdb file path. StartIndex = 0; for (Index = 0; PdbPointer[Index] != 0; Index++) { if ((PdbPointer[Index] == '\\') || (PdbPointer[Index] == '/')) { StartIndex = Index + 1; } } // Copy the PDB file name to EfiFileName and replace .pdb with .efi for (Index = 0; Index < EfiFileNameSize - 4; Index++) { EfiFileName[Index] = PdbPointer[Index + StartIndex]; if (EfiFileName[Index] == 0) { EfiFileName[Index] = '.'; } if (EfiFileName[Index] == '.') { EfiFileName[Index + 1] = 'e'; EfiFileName[Index + 2] = 'f'; EfiFileName[Index + 3] = 'i'; EfiFileName[Index + 4] = 0; break; } } if (Index == sizeof (EfiFileName) - 4) { EfiFileName[Index] = 0; } } /** Debug dumps the input list of IMAGE_PROPERTIES_RECORD structs. @param[in] ImageRecordList Head of the IMAGE_PROPERTIES_RECORD list **/ VOID EFIAPI DumpImageRecords ( IN LIST_ENTRY *ImageRecordList ) { LIST_ENTRY *ImageRecordLink; IMAGE_PROPERTIES_RECORD *CurrentImageRecord; LIST_ENTRY *CodeSectionLink; IMAGE_PROPERTIES_RECORD_CODE_SECTION *CurrentCodeSection; CHAR8 *PdbPointer; CHAR8 EfiFileName[256]; if (ImageRecordList == NULL) { return; } ImageRecordLink = ImageRecordList->ForwardLink; while (ImageRecordLink != ImageRecordList) { CurrentImageRecord = CR ( ImageRecordLink, IMAGE_PROPERTIES_RECORD, Link, IMAGE_PROPERTIES_RECORD_SIGNATURE ); PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *)(UINTN)CurrentImageRecord->ImageBase); if (PdbPointer != NULL) { GetFilename (PdbPointer, EfiFileName, sizeof (EfiFileName)); DEBUG (( DEBUG_INFO, "%a: 0x%llx - 0x%llx\n", EfiFileName, CurrentImageRecord->ImageBase, CurrentImageRecord->ImageBase + CurrentImageRecord->ImageSize )); } else { DEBUG (( DEBUG_INFO, "Unknown Image: 0x%llx - 0x%llx\n", CurrentImageRecord->ImageBase, CurrentImageRecord->ImageBase + CurrentImageRecord->ImageSize )); } CodeSectionLink = CurrentImageRecord->CodeSegmentList.ForwardLink; while (CodeSectionLink != &CurrentImageRecord->CodeSegmentList) { CurrentCodeSection = CR ( CodeSectionLink, IMAGE_PROPERTIES_RECORD_CODE_SECTION, Link, IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE ); DEBUG (( DEBUG_INFO, " Code Section: 0x%llx - 0x%llx\n", CurrentCodeSection->CodeSegmentBase, CurrentCodeSection->CodeSegmentBase + CurrentCodeSection->CodeSegmentSize )); CodeSectionLink = CodeSectionLink->ForwardLink; } ImageRecordLink = ImageRecordLink->ForwardLink; } } /** Find image record according to image base and size. @param[in] ImageBase Base of PE image @param[in] ImageSize Size of PE image @param[in] ImageRecordList Image record list to be searched @retval NULL No IMAGE_PROPERTIES_RECORD matches ImageBase and ImageSize in the input ImageRecordList @retval Other The found IMAGE_PROPERTIES_RECORD **/ IMAGE_PROPERTIES_RECORD * EFIAPI FindImageRecord ( IN EFI_PHYSICAL_ADDRESS ImageBase, IN UINT64 ImageSize, IN LIST_ENTRY *ImageRecordList ) { IMAGE_PROPERTIES_RECORD *ImageRecord; LIST_ENTRY *ImageRecordLink; if (ImageRecordList == NULL) { return NULL; } for (ImageRecordLink = ImageRecordList->ForwardLink; ImageRecordLink != ImageRecordList; ImageRecordLink = ImageRecordLink->ForwardLink) { ImageRecord = CR ( ImageRecordLink, IMAGE_PROPERTIES_RECORD, Link, IMAGE_PROPERTIES_RECORD_SIGNATURE ); if ((ImageBase == ImageRecord->ImageBase) && (ImageSize == ImageRecord->ImageSize)) { return ImageRecord; } } return NULL; } /** Creates an IMAGE_PROPERTIES_RECORD from a loaded PE image. The PE/COFF header will be found and parsed to determine the number of code segments and their base addresses and sizes. @param[in] ImageBase Base of the PE image @param[in] ImageSize Size of the PE image @param[in] RequiredAlignment If non-NULL, the alignment specified in the PE/COFF header will be compared against this value. @param[out] ImageRecord On out, a populated image properties record @retval EFI_INVALID_PARAMETER This function ImageBase or ImageRecord was NULL, or the image located at ImageBase was not a valid PE/COFF image @retval EFI_OUT_OF_RESOURCES Failure to Allocate() @retval EFI_ABORTED The input Alignment was non-NULL and did not match the alignment specified in the PE/COFF header @retval EFI_SUCCESS The image properties record was successfully created **/ EFI_STATUS EFIAPI CreateImagePropertiesRecord ( IN CONST VOID *ImageBase, IN CONST UINT64 ImageSize, IN CONST UINT32 *RequiredAlignment OPTIONAL, OUT IMAGE_PROPERTIES_RECORD *ImageRecord ) { EFI_STATUS Status; EFI_IMAGE_DOS_HEADER *DosHdr; EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION Hdr; EFI_IMAGE_SECTION_HEADER *Section; IMAGE_PROPERTIES_RECORD_CODE_SECTION *ImageRecordCodeSection; UINTN Index; UINT8 *Name; UINT32 SectionAlignment; UINT32 PeCoffHeaderOffset; CHAR8 *PdbPointer; if ((ImageRecord == NULL) || (ImageBase == NULL)) { return EFI_INVALID_PARAMETER; } DEBUG (( DEBUG_VERBOSE, "Creating Image Properties Record: 0x%016lx - 0x%016lx\n", (EFI_PHYSICAL_ADDRESS)(UINTN)ImageBase, ImageSize )); // // Step 1: record whole region // Status = EFI_SUCCESS; ImageRecord->Signature = IMAGE_PROPERTIES_RECORD_SIGNATURE; ImageRecord->ImageBase = (EFI_PHYSICAL_ADDRESS)(UINTN)ImageBase; ImageRecord->ImageSize = ImageSize; ImageRecord->CodeSegmentCount = 0; InitializeListHead (&ImageRecord->Link); InitializeListHead (&ImageRecord->CodeSegmentList); PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *)(UINTN)ImageBase); if (PdbPointer != NULL) { DEBUG ((DEBUG_ERROR, " Image - %a\n", PdbPointer)); } // Check PE/COFF image DosHdr = (EFI_IMAGE_DOS_HEADER *)(UINTN)ImageBase; PeCoffHeaderOffset = 0; if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) { PeCoffHeaderOffset = DosHdr->e_lfanew; } Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)((UINT8 *)(UINTN)ImageBase + PeCoffHeaderOffset); if (Hdr.Pe32->Signature != EFI_IMAGE_NT_SIGNATURE) { DEBUG ((DEBUG_VERBOSE, "Hdr.Pe32->Signature invalid - 0x%x\n", Hdr.Pe32->Signature)); return EFI_INVALID_PARAMETER; } // Get SectionAlignment if (Hdr.Pe32->OptionalHeader.Magic == EFI_IMAGE_NT_OPTIONAL_HDR32_MAGIC) { SectionAlignment = Hdr.Pe32->OptionalHeader.SectionAlignment; } else { SectionAlignment = Hdr.Pe32Plus->OptionalHeader.SectionAlignment; } // Check RequiredAlignment if ((RequiredAlignment != NULL) && ((SectionAlignment & (*RequiredAlignment - 1)) != 0)) { DEBUG (( DEBUG_WARN, "!!!!!!!! Image Section Alignment(0x%x) does not match Required Alignment (0x%x) !!!!!!!!\n", SectionAlignment, *RequiredAlignment )); return EFI_ABORTED; } Section = (EFI_IMAGE_SECTION_HEADER *)( (UINT8 *)(UINTN)ImageBase + PeCoffHeaderOffset + sizeof (UINT32) + sizeof (EFI_IMAGE_FILE_HEADER) + Hdr.Pe32->FileHeader.SizeOfOptionalHeader ); for (Index = 0; Index < Hdr.Pe32->FileHeader.NumberOfSections; Index++) { Name = Section[Index].Name; DEBUG (( DEBUG_VERBOSE, " Section - '%c%c%c%c%c%c%c%c'\n", Name[0], Name[1], Name[2], Name[3], Name[4], Name[5], Name[6], Name[7] )); if ((Section[Index].Characteristics & EFI_IMAGE_SCN_CNT_CODE) != 0) { DEBUG ((DEBUG_VERBOSE, " VirtualSize - 0x%08x\n", Section[Index].Misc.VirtualSize)); DEBUG ((DEBUG_VERBOSE, " VirtualAddress - 0x%08x\n", Section[Index].VirtualAddress)); DEBUG ((DEBUG_VERBOSE, " SizeOfRawData - 0x%08x\n", Section[Index].SizeOfRawData)); DEBUG ((DEBUG_VERBOSE, " PointerToRawData - 0x%08x\n", Section[Index].PointerToRawData)); DEBUG ((DEBUG_VERBOSE, " PointerToRelocations - 0x%08x\n", Section[Index].PointerToRelocations)); DEBUG ((DEBUG_VERBOSE, " PointerToLinenumbers - 0x%08x\n", Section[Index].PointerToLinenumbers)); DEBUG ((DEBUG_VERBOSE, " NumberOfRelocations - 0x%08x\n", Section[Index].NumberOfRelocations)); DEBUG ((DEBUG_VERBOSE, " NumberOfLinenumbers - 0x%08x\n", Section[Index].NumberOfLinenumbers)); DEBUG ((DEBUG_VERBOSE, " Characteristics - 0x%08x\n", Section[Index].Characteristics)); // Record code section(s) ImageRecordCodeSection = AllocatePool (sizeof (*ImageRecordCodeSection)); if (ImageRecordCodeSection == NULL) { Status = EFI_OUT_OF_RESOURCES; goto CreateImagePropertiesRecordEnd; } ImageRecordCodeSection->Signature = IMAGE_PROPERTIES_RECORD_CODE_SECTION_SIGNATURE; ImageRecordCodeSection->CodeSegmentBase = (UINTN)ImageBase + Section[Index].VirtualAddress; // We still need to align the VirtualSize to the SectionAlignment because MSVC does not do // this when creating a PE image. It expects the loader to do this. ImageRecordCodeSection->CodeSegmentSize = ALIGN_VALUE (Section[Index].Misc.VirtualSize, SectionAlignment); InsertTailList (&ImageRecord->CodeSegmentList, &ImageRecordCodeSection->Link); ImageRecord->CodeSegmentCount++; } } if (ImageRecord->CodeSegmentCount > 0) { SortImageRecordCodeSection (ImageRecord); } // // Check overlap all section in ImageBase/Size // if (!IsImageRecordCodeSectionValid (ImageRecord)) { DEBUG ((DEBUG_ERROR, "IsImageRecordCodeSectionValid - FAIL\n")); Status = EFI_INVALID_PARAMETER; goto CreateImagePropertiesRecordEnd; } // // Round up the ImageSize, some CPU arch may return EFI_UNSUPPORTED if ImageSize is not aligned. // Given that the loader always allocates full pages, we know the space after the image is not used. // ImageRecord->ImageSize = ALIGN_VALUE (ImageRecord->ImageSize, EFI_PAGE_SIZE); CreateImagePropertiesRecordEnd: if (EFI_ERROR (Status)) { // we failed to create a valid record, free the section memory that was allocated FreeImageRecordCodeSections (ImageRecord); } return Status; } /** Deleted an image properties record. The function will also call RemoveEntryList() on each code segment and the input ImageRecord before freeing each pool. @param[in] ImageRecord The IMAGE_PROPERTIES_RECORD to delete **/ VOID EFIAPI DeleteImagePropertiesRecord ( IN IMAGE_PROPERTIES_RECORD *ImageRecord ) { FreeImageRecordCodeSections (ImageRecord); if (!IsListEmpty (&ImageRecord->Link)) { RemoveEntryList (&ImageRecord->Link); } FreePool (ImageRecord); }