/** @file Implementation for EFI_SIMPLE_TEXT_INPUT_PROTOCOL protocol. (C) Copyright 2014 Hewlett-Packard Development Company, L.P.
Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.
Copyright (C) 2016 Silicon Graphics, Inc. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "Terminal.h" /** Reads the next keystroke from the input device. The WaitForKey Event can be used to test for existence of a keystroke via WaitForEvent () call. @param TerminalDevice Terminal driver private structure @param KeyData A pointer to a buffer that is filled in with the keystroke state data for the key that was pressed. @retval EFI_SUCCESS The keystroke information was returned. @retval EFI_NOT_READY There was no keystroke data available. @retval EFI_INVALID_PARAMETER KeyData is NULL. **/ EFI_STATUS ReadKeyStrokeWorker ( IN TERMINAL_DEV *TerminalDevice, OUT EFI_KEY_DATA *KeyData ) { if (KeyData == NULL) { return EFI_INVALID_PARAMETER; } KeyData->KeyState.KeyShiftState = 0; KeyData->KeyState.KeyToggleState = 0; if (!EfiKeyFiFoRemoveOneKey (TerminalDevice, &KeyData->Key)) { return EFI_NOT_READY; } return EFI_SUCCESS; } /** Implements EFI_SIMPLE_TEXT_INPUT_PROTOCOL.Reset(). This driver only perform dependent serial device reset regardless of the value of ExtendeVerification @param This Indicates the calling context. @param ExtendedVerification Skip by this driver. @retval EFI_SUCCESS The reset operation succeeds. @retval EFI_DEVICE_ERROR The dependent serial port reset fails. **/ EFI_STATUS EFIAPI TerminalConInReset ( IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This, IN BOOLEAN ExtendedVerification ) { EFI_STATUS Status; TERMINAL_DEV *TerminalDevice; TerminalDevice = TERMINAL_CON_IN_DEV_FROM_THIS (This); // // Report progress code here // REPORT_STATUS_CODE_WITH_DEVICE_PATH ( EFI_PROGRESS_CODE, (EFI_PERIPHERAL_REMOTE_CONSOLE | EFI_P_PC_RESET), TerminalDevice->DevicePath ); Status = TerminalDevice->SerialIo->Reset (TerminalDevice->SerialIo); // // Make all the internal buffer empty for keys // TerminalDevice->RawFiFo->Head = TerminalDevice->RawFiFo->Tail; TerminalDevice->UnicodeFiFo->Head = TerminalDevice->UnicodeFiFo->Tail; TerminalDevice->EfiKeyFiFo->Head = TerminalDevice->EfiKeyFiFo->Tail; TerminalDevice->EfiKeyFiFoForNotify->Head = TerminalDevice->EfiKeyFiFoForNotify->Tail; if (EFI_ERROR (Status)) { REPORT_STATUS_CODE_WITH_DEVICE_PATH ( EFI_ERROR_CODE | EFI_ERROR_MINOR, (EFI_PERIPHERAL_REMOTE_CONSOLE | EFI_P_EC_CONTROLLER_ERROR), TerminalDevice->DevicePath ); } return Status; } /** Implements EFI_SIMPLE_TEXT_INPUT_PROTOCOL.ReadKeyStroke(). @param This Indicates the calling context. @param Key A pointer to a buffer that is filled in with the keystroke information for the key that was sent from terminal. @retval EFI_SUCCESS The keystroke information is returned successfully. @retval EFI_NOT_READY There is no keystroke data available. @retval EFI_DEVICE_ERROR The dependent serial device encounters error. @retval EFI_UNSUPPORTED The device does not support the ability to read keystroke data. **/ EFI_STATUS EFIAPI TerminalConInReadKeyStroke ( IN EFI_SIMPLE_TEXT_INPUT_PROTOCOL *This, OUT EFI_INPUT_KEY *Key ) { TERMINAL_DEV *TerminalDevice; EFI_STATUS Status; EFI_KEY_DATA KeyData; // // get TERMINAL_DEV from "This" parameter. // TerminalDevice = TERMINAL_CON_IN_DEV_FROM_THIS (This); Status = ReadKeyStrokeWorker (TerminalDevice, &KeyData); if (EFI_ERROR (Status)) { return Status; } CopyMem (Key, &KeyData.Key, sizeof (EFI_INPUT_KEY)); return EFI_SUCCESS; } /** Check if the key already has been registered. If both RegsiteredData and InputData is NULL, then ASSERT(). @param RegsiteredData A pointer to a buffer that is filled in with the keystroke state data for the key that was registered. @param InputData A pointer to a buffer that is filled in with the keystroke state data for the key that was pressed. @retval TRUE Key be pressed matches a registered key. @retval FALSE Match failed. **/ BOOLEAN IsKeyRegistered ( IN EFI_KEY_DATA *RegsiteredData, IN EFI_KEY_DATA *InputData ) { ASSERT (RegsiteredData != NULL && InputData != NULL); if ((RegsiteredData->Key.ScanCode != InputData->Key.ScanCode) || (RegsiteredData->Key.UnicodeChar != InputData->Key.UnicodeChar)) { return FALSE; } return TRUE; } /** Event notification function for EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.WaitForKeyEx event Signal the event if there is key available @param Event Indicates the event that invoke this function. @param Context Indicates the calling context. **/ VOID EFIAPI TerminalConInWaitForKeyEx ( IN EFI_EVENT Event, IN VOID *Context ) { TerminalConInWaitForKey (Event, Context); } // // Simple Text Input Ex protocol functions // /** Reset the input device and optionally run diagnostics @param This Protocol instance pointer. @param ExtendedVerification Driver may perform diagnostics on reset. @retval EFI_SUCCESS The device was reset. @retval EFI_DEVICE_ERROR The device is not functioning properly and could not be reset. **/ EFI_STATUS EFIAPI TerminalConInResetEx ( IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This, IN BOOLEAN ExtendedVerification ) { EFI_STATUS Status; TERMINAL_DEV *TerminalDevice; TerminalDevice = TERMINAL_CON_IN_EX_DEV_FROM_THIS (This); Status = TerminalDevice->SimpleInput.Reset (&TerminalDevice->SimpleInput, ExtendedVerification); if (EFI_ERROR (Status)) { return EFI_DEVICE_ERROR; } return EFI_SUCCESS; } /** Reads the next keystroke from the input device. The WaitForKey Event can be used to test for existence of a keystroke via WaitForEvent () call. @param This Protocol instance pointer. @param KeyData A pointer to a buffer that is filled in with the keystroke state data for the key that was pressed. @retval EFI_SUCCESS The keystroke information was returned. @retval EFI_NOT_READY There was no keystroke data available. @retval EFI_DEVICE_ERROR The keystroke information was not returned due to hardware errors. @retval EFI_INVALID_PARAMETER KeyData is NULL. @retval EFI_UNSUPPORTED The device does not support the ability to read keystroke data. **/ EFI_STATUS EFIAPI TerminalConInReadKeyStrokeEx ( IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This, OUT EFI_KEY_DATA *KeyData ) { TERMINAL_DEV *TerminalDevice; if (KeyData == NULL) { return EFI_INVALID_PARAMETER; } TerminalDevice = TERMINAL_CON_IN_EX_DEV_FROM_THIS (This); return ReadKeyStrokeWorker (TerminalDevice, KeyData); } /** Set certain state for the input device. @param This Protocol instance pointer. @param KeyToggleState A pointer to the EFI_KEY_TOGGLE_STATE to set the state for the input device. @retval EFI_SUCCESS The device state was set successfully. @retval EFI_DEVICE_ERROR The device is not functioning correctly and could not have the setting adjusted. @retval EFI_UNSUPPORTED The device does not have the ability to set its state. @retval EFI_INVALID_PARAMETER KeyToggleState is NULL. **/ EFI_STATUS EFIAPI TerminalConInSetState ( IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This, IN EFI_KEY_TOGGLE_STATE *KeyToggleState ) { if (KeyToggleState == NULL) { return EFI_INVALID_PARAMETER; } if ((*KeyToggleState & EFI_TOGGLE_STATE_VALID) != EFI_TOGGLE_STATE_VALID) { return EFI_UNSUPPORTED; } return EFI_SUCCESS; } /** Register a notification function for a particular keystroke for the input device. @param This Protocol instance pointer. @param KeyData A pointer to a buffer that is filled in with the keystroke information for the key that was pressed. If KeyData.Key, KeyData.KeyState.KeyToggleState and KeyData.KeyState.KeyShiftState are 0, then any incomplete keystroke will trigger a notification of the KeyNotificationFunction. @param KeyNotificationFunction Points to the function to be called when the key sequence is typed specified by KeyData. This notification function should be called at <=TPL_CALLBACK. @param NotifyHandle Points to the unique handle assigned to the registered notification. @retval EFI_SUCCESS The notification function was registered successfully. @retval EFI_OUT_OF_RESOURCES Unable to allocate resources for necessary data structures. @retval EFI_INVALID_PARAMETER KeyData or NotifyHandle is NULL. **/ EFI_STATUS EFIAPI TerminalConInRegisterKeyNotify ( IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This, IN EFI_KEY_DATA *KeyData, IN EFI_KEY_NOTIFY_FUNCTION KeyNotificationFunction, OUT VOID **NotifyHandle ) { TERMINAL_DEV *TerminalDevice; TERMINAL_CONSOLE_IN_EX_NOTIFY *NewNotify; LIST_ENTRY *Link; LIST_ENTRY *NotifyList; TERMINAL_CONSOLE_IN_EX_NOTIFY *CurrentNotify; if ((KeyData == NULL) || (NotifyHandle == NULL) || (KeyNotificationFunction == NULL)) { return EFI_INVALID_PARAMETER; } TerminalDevice = TERMINAL_CON_IN_EX_DEV_FROM_THIS (This); // // Return EFI_SUCCESS if the (KeyData, NotificationFunction) is already registered. // NotifyList = &TerminalDevice->NotifyList; for (Link = GetFirstNode (NotifyList); !IsNull (NotifyList, Link); Link = GetNextNode (NotifyList, Link)) { CurrentNotify = CR ( Link, TERMINAL_CONSOLE_IN_EX_NOTIFY, NotifyEntry, TERMINAL_CONSOLE_IN_EX_NOTIFY_SIGNATURE ); if (IsKeyRegistered (&CurrentNotify->KeyData, KeyData)) { if (CurrentNotify->KeyNotificationFn == KeyNotificationFunction) { *NotifyHandle = CurrentNotify; return EFI_SUCCESS; } } } // // Allocate resource to save the notification function // NewNotify = (TERMINAL_CONSOLE_IN_EX_NOTIFY *)AllocateZeroPool (sizeof (TERMINAL_CONSOLE_IN_EX_NOTIFY)); if (NewNotify == NULL) { return EFI_OUT_OF_RESOURCES; } NewNotify->Signature = TERMINAL_CONSOLE_IN_EX_NOTIFY_SIGNATURE; NewNotify->KeyNotificationFn = KeyNotificationFunction; CopyMem (&NewNotify->KeyData, KeyData, sizeof (EFI_KEY_DATA)); InsertTailList (&TerminalDevice->NotifyList, &NewNotify->NotifyEntry); *NotifyHandle = NewNotify; return EFI_SUCCESS; } /** Remove a registered notification function from a particular keystroke. @param This Protocol instance pointer. @param NotificationHandle The handle of the notification function being unregistered. @retval EFI_SUCCESS The notification function was unregistered successfully. @retval EFI_INVALID_PARAMETER The NotificationHandle is invalid. **/ EFI_STATUS EFIAPI TerminalConInUnregisterKeyNotify ( IN EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL *This, IN VOID *NotificationHandle ) { TERMINAL_DEV *TerminalDevice; LIST_ENTRY *Link; TERMINAL_CONSOLE_IN_EX_NOTIFY *CurrentNotify; LIST_ENTRY *NotifyList; if (NotificationHandle == NULL) { return EFI_INVALID_PARAMETER; } TerminalDevice = TERMINAL_CON_IN_EX_DEV_FROM_THIS (This); NotifyList = &TerminalDevice->NotifyList; for (Link = GetFirstNode (NotifyList); !IsNull (NotifyList, Link); Link = GetNextNode (NotifyList, Link)) { CurrentNotify = CR ( Link, TERMINAL_CONSOLE_IN_EX_NOTIFY, NotifyEntry, TERMINAL_CONSOLE_IN_EX_NOTIFY_SIGNATURE ); if (CurrentNotify == NotificationHandle) { // // Remove the notification function from NotifyList and free resources // RemoveEntryList (&CurrentNotify->NotifyEntry); gBS->FreePool (CurrentNotify); return EFI_SUCCESS; } } // // Can not find the matching entry in database. // return EFI_INVALID_PARAMETER; } /** Translate raw data into Unicode (according to different encode), and translate Unicode into key information. (according to different standard). @param TerminalDevice Terminal driver private structure. **/ VOID TranslateRawDataToEfiKey ( IN TERMINAL_DEV *TerminalDevice ) { switch (TerminalDevice->TerminalType) { case TerminalTypePcAnsi: case TerminalTypeVt100: case TerminalTypeVt100Plus: case TerminalTypeTtyTerm: case TerminalTypeLinux: case TerminalTypeXtermR6: case TerminalTypeVt400: case TerminalTypeSCO: AnsiRawDataToUnicode (TerminalDevice); UnicodeToEfiKey (TerminalDevice); break; case TerminalTypeVtUtf8: // // Process all the raw data in the RawFIFO, // put the processed key into UnicodeFIFO. // VTUTF8RawDataToUnicode (TerminalDevice); // // Translate all the Unicode data in the UnicodeFIFO to Efi key, // then put into EfiKeyFIFO. // UnicodeToEfiKey (TerminalDevice); break; } } /** Event notification function for EFI_SIMPLE_TEXT_INPUT_PROTOCOL.WaitForKey event Signal the event if there is key available @param Event Indicates the event that invoke this function. @param Context Indicates the calling context. **/ VOID EFIAPI TerminalConInWaitForKey ( IN EFI_EVENT Event, IN VOID *Context ) { // // Someone is waiting on the keystroke event, if there's // a key pending, signal the event // if (!IsEfiKeyFiFoEmpty ((TERMINAL_DEV *)Context)) { gBS->SignalEvent (Event); } } /** Timer handler to poll the key from serial. @param Event Indicates the event that invoke this function. @param Context Indicates the calling context. **/ VOID EFIAPI TerminalConInTimerHandler ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_STATUS Status; TERMINAL_DEV *TerminalDevice; UINT32 Control; UINT8 Input; EFI_SERIAL_IO_MODE *Mode; EFI_SERIAL_IO_PROTOCOL *SerialIo; UINTN SerialInTimeOut; TerminalDevice = (TERMINAL_DEV *)Context; SerialIo = TerminalDevice->SerialIo; if (SerialIo == NULL) { return; } // // if current timeout value for serial device is not identical with // the value saved in TERMINAL_DEV structure, then recalculate the // timeout value again and set serial attribute according to this value. // Mode = SerialIo->Mode; if (Mode->Timeout != TerminalDevice->SerialInTimeOut) { SerialInTimeOut = 0; if (Mode->BaudRate != 0) { // // According to BAUD rate to calculate the timeout value. // SerialInTimeOut = (1 + Mode->DataBits + Mode->StopBits) * 2 * 1000000 / (UINTN)Mode->BaudRate; } Status = SerialIo->SetAttributes ( SerialIo, Mode->BaudRate, Mode->ReceiveFifoDepth, (UINT32)SerialInTimeOut, (EFI_PARITY_TYPE)(Mode->Parity), (UINT8)Mode->DataBits, (EFI_STOP_BITS_TYPE)(Mode->StopBits) ); if (EFI_ERROR (Status)) { TerminalDevice->SerialInTimeOut = 0; } else { TerminalDevice->SerialInTimeOut = SerialInTimeOut; } } // // Check whether serial buffer is empty. // Skip the key transfer loop only if the SerialIo protocol instance // successfully reports EFI_SERIAL_INPUT_BUFFER_EMPTY. // Status = SerialIo->GetControl (SerialIo, &Control); if (EFI_ERROR (Status) || ((Control & EFI_SERIAL_INPUT_BUFFER_EMPTY) == 0)) { // // Fetch all the keys in the serial buffer, // and insert the byte stream into RawFIFO. // while (!IsRawFiFoFull (TerminalDevice)) { Status = GetOneKeyFromSerial (TerminalDevice->SerialIo, &Input); if (EFI_ERROR (Status)) { if (Status == EFI_DEVICE_ERROR) { REPORT_STATUS_CODE_WITH_DEVICE_PATH ( EFI_ERROR_CODE | EFI_ERROR_MINOR, (EFI_PERIPHERAL_REMOTE_CONSOLE | EFI_P_EC_INPUT_ERROR), TerminalDevice->DevicePath ); } break; } RawFiFoInsertOneKey (TerminalDevice, Input); } } // // Translate all the raw data in RawFIFO into EFI Key, // according to different terminal type supported. // TranslateRawDataToEfiKey (TerminalDevice); } /** Process key notify. @param Event Indicates the event that invoke this function. @param Context Indicates the calling context. **/ VOID EFIAPI KeyNotifyProcessHandler ( IN EFI_EVENT Event, IN VOID *Context ) { BOOLEAN HasKey; TERMINAL_DEV *TerminalDevice; EFI_INPUT_KEY Key; EFI_KEY_DATA KeyData; LIST_ENTRY *Link; LIST_ENTRY *NotifyList; TERMINAL_CONSOLE_IN_EX_NOTIFY *CurrentNotify; EFI_TPL OldTpl; TerminalDevice = (TERMINAL_DEV *)Context; // // Invoke notification functions. // NotifyList = &TerminalDevice->NotifyList; while (TRUE) { // // Enter critical section // OldTpl = gBS->RaiseTPL (TPL_NOTIFY); HasKey = EfiKeyFiFoForNotifyRemoveOneKey (TerminalDevice->EfiKeyFiFoForNotify, &Key); CopyMem (&KeyData.Key, &Key, sizeof (EFI_INPUT_KEY)); KeyData.KeyState.KeyShiftState = 0; KeyData.KeyState.KeyToggleState = 0; // // Leave critical section // gBS->RestoreTPL (OldTpl); if (!HasKey) { break; } for (Link = GetFirstNode (NotifyList); !IsNull (NotifyList, Link); Link = GetNextNode (NotifyList, Link)) { CurrentNotify = CR (Link, TERMINAL_CONSOLE_IN_EX_NOTIFY, NotifyEntry, TERMINAL_CONSOLE_IN_EX_NOTIFY_SIGNATURE); if (IsKeyRegistered (&CurrentNotify->KeyData, &KeyData)) { CurrentNotify->KeyNotificationFn (&KeyData); } } } } /** Get one key out of serial buffer. @param SerialIo Serial I/O protocol attached to the serial device. @param Output The fetched key. @retval EFI_NOT_READY If serial buffer is empty. @retval EFI_DEVICE_ERROR If reading serial buffer encounter error. @retval EFI_SUCCESS If reading serial buffer successfully, put the fetched key to the parameter output. **/ EFI_STATUS GetOneKeyFromSerial ( EFI_SERIAL_IO_PROTOCOL *SerialIo, UINT8 *Output ) { EFI_STATUS Status; UINTN Size; Size = 1; *Output = 0; // // Read one key from serial I/O device. // Status = SerialIo->Read (SerialIo, &Size, Output); if (EFI_ERROR (Status)) { if (Status == EFI_TIMEOUT) { return EFI_NOT_READY; } return EFI_DEVICE_ERROR; } if (*Output == 0) { return EFI_NOT_READY; } return EFI_SUCCESS; } /** Insert one byte raw data into the Raw Data FIFO. @param TerminalDevice Terminal driver private structure. @param Input The key will be input. @retval TRUE If insert successfully. @retval FALSE If Raw Data buffer is full before key insertion, and the key is lost. **/ BOOLEAN RawFiFoInsertOneKey ( TERMINAL_DEV *TerminalDevice, UINT8 Input ) { UINT8 Tail; Tail = TerminalDevice->RawFiFo->Tail; if (IsRawFiFoFull (TerminalDevice)) { // // Raw FIFO is full // return FALSE; } TerminalDevice->RawFiFo->Data[Tail] = Input; TerminalDevice->RawFiFo->Tail = (UINT8)((Tail + 1) % (RAW_FIFO_MAX_NUMBER + 1)); return TRUE; } /** Remove one pre-fetched key out of the Raw Data FIFO. @param TerminalDevice Terminal driver private structure. @param Output The key will be removed. @retval TRUE If insert successfully. @retval FALSE If Raw Data FIFO buffer is empty before remove operation. **/ BOOLEAN RawFiFoRemoveOneKey ( TERMINAL_DEV *TerminalDevice, UINT8 *Output ) { UINT8 Head; Head = TerminalDevice->RawFiFo->Head; if (IsRawFiFoEmpty (TerminalDevice)) { // // FIFO is empty // *Output = 0; return FALSE; } *Output = TerminalDevice->RawFiFo->Data[Head]; TerminalDevice->RawFiFo->Head = (UINT8)((Head + 1) % (RAW_FIFO_MAX_NUMBER + 1)); return TRUE; } /** Clarify whether Raw Data FIFO buffer is empty. @param TerminalDevice Terminal driver private structure @retval TRUE If Raw Data FIFO buffer is empty. @retval FALSE If Raw Data FIFO buffer is not empty. **/ BOOLEAN IsRawFiFoEmpty ( TERMINAL_DEV *TerminalDevice ) { if (TerminalDevice->RawFiFo->Head == TerminalDevice->RawFiFo->Tail) { return TRUE; } else { return FALSE; } } /** Clarify whether Raw Data FIFO buffer is full. @param TerminalDevice Terminal driver private structure @retval TRUE If Raw Data FIFO buffer is full. @retval FALSE If Raw Data FIFO buffer is not full. **/ BOOLEAN IsRawFiFoFull ( TERMINAL_DEV *TerminalDevice ) { UINT8 Tail; UINT8 Head; Tail = TerminalDevice->RawFiFo->Tail; Head = TerminalDevice->RawFiFo->Head; if (((Tail + 1) % (RAW_FIFO_MAX_NUMBER + 1)) == Head) { return TRUE; } return FALSE; } /** Insert one pre-fetched key into the FIFO buffer. @param EfiKeyFiFo Pointer to instance of EFI_KEY_FIFO. @param Input The key will be input. @retval TRUE If insert successfully. @retval FALSE If FIFO buffer is full before key insertion, and the key is lost. **/ BOOLEAN EfiKeyFiFoForNotifyInsertOneKey ( EFI_KEY_FIFO *EfiKeyFiFo, EFI_INPUT_KEY *Input ) { UINT8 Tail; Tail = EfiKeyFiFo->Tail; if (IsEfiKeyFiFoForNotifyFull (EfiKeyFiFo)) { // // FIFO is full // return FALSE; } CopyMem (&EfiKeyFiFo->Data[Tail], Input, sizeof (EFI_INPUT_KEY)); EfiKeyFiFo->Tail = (UINT8)((Tail + 1) % (FIFO_MAX_NUMBER + 1)); return TRUE; } /** Remove one pre-fetched key out of the FIFO buffer. @param EfiKeyFiFo Pointer to instance of EFI_KEY_FIFO. @param Output The key will be removed. @retval TRUE If remove successfully. @retval FALSE If FIFO buffer is empty before remove operation. **/ BOOLEAN EfiKeyFiFoForNotifyRemoveOneKey ( EFI_KEY_FIFO *EfiKeyFiFo, EFI_INPUT_KEY *Output ) { UINT8 Head; Head = EfiKeyFiFo->Head; ASSERT (Head < FIFO_MAX_NUMBER + 1); if (IsEfiKeyFiFoForNotifyEmpty (EfiKeyFiFo)) { // // FIFO is empty // Output->ScanCode = SCAN_NULL; Output->UnicodeChar = 0; return FALSE; } CopyMem (Output, &EfiKeyFiFo->Data[Head], sizeof (EFI_INPUT_KEY)); EfiKeyFiFo->Head = (UINT8)((Head + 1) % (FIFO_MAX_NUMBER + 1)); return TRUE; } /** Clarify whether FIFO buffer is empty. @param EfiKeyFiFo Pointer to instance of EFI_KEY_FIFO. @retval TRUE If FIFO buffer is empty. @retval FALSE If FIFO buffer is not empty. **/ BOOLEAN IsEfiKeyFiFoForNotifyEmpty ( EFI_KEY_FIFO *EfiKeyFiFo ) { if (EfiKeyFiFo->Head == EfiKeyFiFo->Tail) { return TRUE; } else { return FALSE; } } /** Clarify whether FIFO buffer is full. @param EfiKeyFiFo Pointer to instance of EFI_KEY_FIFO. @retval TRUE If FIFO buffer is full. @retval FALSE If FIFO buffer is not full. **/ BOOLEAN IsEfiKeyFiFoForNotifyFull ( EFI_KEY_FIFO *EfiKeyFiFo ) { UINT8 Tail; UINT8 Head; Tail = EfiKeyFiFo->Tail; Head = EfiKeyFiFo->Head; if (((Tail + 1) % (FIFO_MAX_NUMBER + 1)) == Head) { return TRUE; } return FALSE; } /** Insert one pre-fetched key into the FIFO buffer. @param TerminalDevice Terminal driver private structure. @param Key The key will be input. @retval TRUE If insert successfully. @retval FALSE If FIFO buffer is full before key insertion, and the key is lost. **/ BOOLEAN EfiKeyFiFoInsertOneKey ( TERMINAL_DEV *TerminalDevice, EFI_INPUT_KEY *Key ) { UINT8 Tail; LIST_ENTRY *Link; LIST_ENTRY *NotifyList; TERMINAL_CONSOLE_IN_EX_NOTIFY *CurrentNotify; EFI_KEY_DATA KeyData; Tail = TerminalDevice->EfiKeyFiFo->Tail; CopyMem (&KeyData.Key, Key, sizeof (EFI_INPUT_KEY)); KeyData.KeyState.KeyShiftState = 0; KeyData.KeyState.KeyToggleState = 0; // // Signal KeyNotify process event if this key pressed matches any key registered. // NotifyList = &TerminalDevice->NotifyList; for (Link = GetFirstNode (NotifyList); !IsNull (NotifyList, Link); Link = GetNextNode (NotifyList, Link)) { CurrentNotify = CR ( Link, TERMINAL_CONSOLE_IN_EX_NOTIFY, NotifyEntry, TERMINAL_CONSOLE_IN_EX_NOTIFY_SIGNATURE ); if (IsKeyRegistered (&CurrentNotify->KeyData, &KeyData)) { // // The key notification function needs to run at TPL_CALLBACK // while current TPL is TPL_NOTIFY. It will be invoked in // KeyNotifyProcessHandler() which runs at TPL_CALLBACK. // EfiKeyFiFoForNotifyInsertOneKey (TerminalDevice->EfiKeyFiFoForNotify, Key); gBS->SignalEvent (TerminalDevice->KeyNotifyProcessEvent); break; } } if (IsEfiKeyFiFoFull (TerminalDevice)) { // // Efi Key FIFO is full // return FALSE; } CopyMem (&TerminalDevice->EfiKeyFiFo->Data[Tail], Key, sizeof (EFI_INPUT_KEY)); TerminalDevice->EfiKeyFiFo->Tail = (UINT8)((Tail + 1) % (FIFO_MAX_NUMBER + 1)); return TRUE; } /** Remove one pre-fetched key out of the FIFO buffer. @param TerminalDevice Terminal driver private structure. @param Output The key will be removed. @retval TRUE If insert successfully. @retval FALSE If FIFO buffer is empty before remove operation. **/ BOOLEAN EfiKeyFiFoRemoveOneKey ( TERMINAL_DEV *TerminalDevice, EFI_INPUT_KEY *Output ) { UINT8 Head; Head = TerminalDevice->EfiKeyFiFo->Head; ASSERT (Head < FIFO_MAX_NUMBER + 1); if (IsEfiKeyFiFoEmpty (TerminalDevice)) { // // FIFO is empty // Output->ScanCode = SCAN_NULL; Output->UnicodeChar = 0; return FALSE; } CopyMem (Output, &TerminalDevice->EfiKeyFiFo->Data[Head], sizeof (EFI_INPUT_KEY)); TerminalDevice->EfiKeyFiFo->Head = (UINT8)((Head + 1) % (FIFO_MAX_NUMBER + 1)); return TRUE; } /** Clarify whether FIFO buffer is empty. @param TerminalDevice Terminal driver private structure @retval TRUE If FIFO buffer is empty. @retval FALSE If FIFO buffer is not empty. **/ BOOLEAN IsEfiKeyFiFoEmpty ( TERMINAL_DEV *TerminalDevice ) { if (TerminalDevice->EfiKeyFiFo->Head == TerminalDevice->EfiKeyFiFo->Tail) { return TRUE; } else { return FALSE; } } /** Clarify whether FIFO buffer is full. @param TerminalDevice Terminal driver private structure @retval TRUE If FIFO buffer is full. @retval FALSE If FIFO buffer is not full. **/ BOOLEAN IsEfiKeyFiFoFull ( TERMINAL_DEV *TerminalDevice ) { UINT8 Tail; UINT8 Head; Tail = TerminalDevice->EfiKeyFiFo->Tail; Head = TerminalDevice->EfiKeyFiFo->Head; if (((Tail + 1) % (FIFO_MAX_NUMBER + 1)) == Head) { return TRUE; } return FALSE; } /** Insert one pre-fetched key into the Unicode FIFO buffer. @param TerminalDevice Terminal driver private structure. @param Input The key will be input. @retval TRUE If insert successfully. @retval FALSE If Unicode FIFO buffer is full before key insertion, and the key is lost. **/ BOOLEAN UnicodeFiFoInsertOneKey ( TERMINAL_DEV *TerminalDevice, UINT16 Input ) { UINT8 Tail; Tail = TerminalDevice->UnicodeFiFo->Tail; ASSERT (Tail < FIFO_MAX_NUMBER + 1); if (IsUnicodeFiFoFull (TerminalDevice)) { // // Unicode FIFO is full // return FALSE; } TerminalDevice->UnicodeFiFo->Data[Tail] = Input; TerminalDevice->UnicodeFiFo->Tail = (UINT8)((Tail + 1) % (FIFO_MAX_NUMBER + 1)); return TRUE; } /** Remove one pre-fetched key out of the Unicode FIFO buffer. The caller should guarantee that Unicode FIFO buffer is not empty by IsUnicodeFiFoEmpty (). @param TerminalDevice Terminal driver private structure. @param Output The key will be removed. **/ VOID UnicodeFiFoRemoveOneKey ( TERMINAL_DEV *TerminalDevice, UINT16 *Output ) { UINT8 Head; Head = TerminalDevice->UnicodeFiFo->Head; ASSERT (Head < FIFO_MAX_NUMBER + 1); *Output = TerminalDevice->UnicodeFiFo->Data[Head]; TerminalDevice->UnicodeFiFo->Head = (UINT8)((Head + 1) % (FIFO_MAX_NUMBER + 1)); } /** Clarify whether Unicode FIFO buffer is empty. @param TerminalDevice Terminal driver private structure @retval TRUE If Unicode FIFO buffer is empty. @retval FALSE If Unicode FIFO buffer is not empty. **/ BOOLEAN IsUnicodeFiFoEmpty ( TERMINAL_DEV *TerminalDevice ) { if (TerminalDevice->UnicodeFiFo->Head == TerminalDevice->UnicodeFiFo->Tail) { return TRUE; } else { return FALSE; } } /** Clarify whether Unicode FIFO buffer is full. @param TerminalDevice Terminal driver private structure @retval TRUE If Unicode FIFO buffer is full. @retval FALSE If Unicode FIFO buffer is not full. **/ BOOLEAN IsUnicodeFiFoFull ( TERMINAL_DEV *TerminalDevice ) { UINT8 Tail; UINT8 Head; Tail = TerminalDevice->UnicodeFiFo->Tail; Head = TerminalDevice->UnicodeFiFo->Head; if (((Tail + 1) % (FIFO_MAX_NUMBER + 1)) == Head) { return TRUE; } return FALSE; } /** Update the Unicode characters from a terminal input device into EFI Keys FIFO. @param TerminalDevice The terminal device to use to translate raw input into EFI Keys **/ VOID UnicodeToEfiKeyFlushState ( IN TERMINAL_DEV *TerminalDevice ) { EFI_INPUT_KEY Key; UINT32 InputState; InputState = TerminalDevice->InputState; if (IsEfiKeyFiFoFull (TerminalDevice)) { return; } if ((InputState & INPUT_STATE_ESC) != 0) { Key.ScanCode = SCAN_ESC; Key.UnicodeChar = 0; EfiKeyFiFoInsertOneKey (TerminalDevice, &Key); } if ((InputState & INPUT_STATE_CSI) != 0) { Key.ScanCode = SCAN_NULL; Key.UnicodeChar = CSI; EfiKeyFiFoInsertOneKey (TerminalDevice, &Key); } if ((InputState & INPUT_STATE_LEFTOPENBRACKET) != 0) { Key.ScanCode = SCAN_NULL; Key.UnicodeChar = LEFTOPENBRACKET; EfiKeyFiFoInsertOneKey (TerminalDevice, &Key); } if ((InputState & INPUT_STATE_O) != 0) { Key.ScanCode = SCAN_NULL; Key.UnicodeChar = 'O'; EfiKeyFiFoInsertOneKey (TerminalDevice, &Key); } if ((InputState & INPUT_STATE_2) != 0) { Key.ScanCode = SCAN_NULL; Key.UnicodeChar = '2'; EfiKeyFiFoInsertOneKey (TerminalDevice, &Key); } // // Cancel the timer. // gBS->SetTimer ( TerminalDevice->TwoSecondTimeOut, TimerCancel, 0 ); TerminalDevice->InputState = INPUT_STATE_DEFAULT; } /** Converts a stream of Unicode characters from a terminal input device into EFI Keys that can be read through the Simple Input Protocol. The table below shows the keyboard input mappings that this function supports. If the ESC sequence listed in one of the columns is presented, then it is translated into the corresponding EFI Scan Code. If a matching sequence is not found, then the raw key strokes are converted into EFI Keys. 2 seconds are allowed for an ESC sequence to be completed. If the ESC sequence is not completed in 2 seconds, then the raw key strokes of the partial ESC sequence are converted into EFI Keys. There is one special input sequence that will force the system to reset. This is ESC R ESC r ESC R. Note: current implementation support terminal types include: PC ANSI, VT100+/VTUTF8, VT100. The table below is not same with UEFI Spec 2.3 Appendix B Table 201(not support ANSI X3.64 / DEC VT200-500 and extra support PC ANSI, VT100)since UEFI Table 201 is just an example. Symbols used in table below =========================== ESC = 0x1B CSI = 0x9B DEL = 0x7f ^ = CTRL +=========+======+===========+==========+==========+ | | EFI | UEFI 2.0 | | | | | Scan | | VT100+ | | | KEY | Code | PC ANSI | VTUTF8 | VT100 | +=========+======+===========+==========+==========+ | NULL | 0x00 | | | | | UP | 0x01 | ESC [ A | ESC [ A | ESC [ A | | DOWN | 0x02 | ESC [ B | ESC [ B | ESC [ B | | RIGHT | 0x03 | ESC [ C | ESC [ C | ESC [ C | | LEFT | 0x04 | ESC [ D | ESC [ D | ESC [ D | | HOME | 0x05 | ESC [ H | ESC h | ESC [ H | | END | 0x06 | ESC [ F | ESC k | ESC [ K | | INSERT | 0x07 | ESC [ @ | ESC + | ESC [ @ | | | | ESC [ L | | ESC [ L | | DELETE | 0x08 | ESC [ X | ESC - | ESC [ P | | PG UP | 0x09 | ESC [ I | ESC ? | ESC [ V | | | | | | ESC [ ? | | PG DOWN | 0x0A | ESC [ G | ESC / | ESC [ U | | | | | | ESC [ / | | F1 | 0x0B | ESC [ M | ESC 1 | ESC O P | | F2 | 0x0C | ESC [ N | ESC 2 | ESC O Q | | F3 | 0x0D | ESC [ O | ESC 3 | ESC O w | | F4 | 0x0E | ESC [ P | ESC 4 | ESC O x | | F5 | 0x0F | ESC [ Q | ESC 5 | ESC O t | | F6 | 0x10 | ESC [ R | ESC 6 | ESC O u | | F7 | 0x11 | ESC [ S | ESC 7 | ESC O q | | F8 | 0x12 | ESC [ T | ESC 8 | ESC O r | | F9 | 0x13 | ESC [ U | ESC 9 | ESC O p | | F10 | 0x14 | ESC [ V | ESC 0 | ESC O M | | Escape | 0x17 | ESC | ESC | ESC | | F11 | 0x15 | | ESC ! | | | F12 | 0x16 | | ESC @ | | +=========+======+===========+==========+==========+ Putty function key map: +=========+======+===========+=============+=============+=============+=========+ | | EFI | | | | | | | | Scan | | | Normal | | | | KEY | Code | VT100+ | Xterm R6 | VT400 | Linux | SCO | +=========+======+===========+=============+=============+=============+=========+ | F1 | 0x0B | ESC O P | ESC O P | ESC [ 1 1 ~ | ESC [ [ A | ESC [ M | | F2 | 0x0C | ESC O Q | ESC O Q | ESC [ 1 2 ~ | ESC [ [ B | ESC [ N | | F3 | 0x0D | ESC O R | ESC O R | ESC [ 1 3 ~ | ESC [ [ C | ESC [ O | | F4 | 0x0E | ESC O S | ESC O S | ESC [ 1 4 ~ | ESC [ [ D | ESC [ P | | F5 | 0x0F | ESC O T | ESC [ 1 5 ~ | ESC [ 1 5 ~ | ESC [ [ E | ESC [ Q | | F6 | 0x10 | ESC O U | ESC [ 1 7 ~ | ESC [ 1 7 ~ | ESC [ 1 7 ~ | ESC [ R | | F7 | 0x11 | ESC O V | ESC [ 1 8 ~ | ESC [ 1 8 ~ | ESC [ 1 8 ~ | ESC [ S | | F8 | 0x12 | ESC O W | ESC [ 1 9 ~ | ESC [ 1 9 ~ | ESC [ 1 9 ~ | ESC [ T | | F9 | 0x13 | ESC O X | ESC [ 2 0 ~ | ESC [ 2 0 ~ | ESC [ 2 0 ~ | ESC [ U | | F10 | 0x14 | ESC O Y | ESC [ 2 1 ~ | ESC [ 2 1 ~ | ESC [ 2 1 ~ | ESC [ V | | Escape | 0x17 | ESC | ESC | ESC | ESC | ESC | | F11 | 0x15 | ESC O Z | ESC [ 2 3 ~ | ESC [ 2 3 ~ | ESC [ 2 3 ~ | ESC [ W | | F12 | 0x16 | ESC O [ | ESC [ 2 4 ~ | ESC [ 2 4 ~ | ESC [ 2 4 ~ | ESC [ X | +=========+======+===========+=============+=============+=============+=========+ Special Mappings ================ ESC R ESC r ESC R = Reset System @param TerminalDevice The terminal device to use to translate raw input into EFI Keys **/ VOID UnicodeToEfiKey ( IN TERMINAL_DEV *TerminalDevice ) { EFI_STATUS Status; EFI_STATUS TimerStatus; UINT16 UnicodeChar; EFI_INPUT_KEY Key; BOOLEAN SetDefaultResetState; TimerStatus = gBS->CheckEvent (TerminalDevice->TwoSecondTimeOut); if (!EFI_ERROR (TimerStatus)) { UnicodeToEfiKeyFlushState (TerminalDevice); TerminalDevice->ResetState = RESET_STATE_DEFAULT; } while (!IsUnicodeFiFoEmpty (TerminalDevice) && !IsEfiKeyFiFoFull (TerminalDevice)) { if (TerminalDevice->InputState != INPUT_STATE_DEFAULT) { // // Check to see if the 2 seconds timer has expired // TimerStatus = gBS->CheckEvent (TerminalDevice->TwoSecondTimeOut); if (!EFI_ERROR (TimerStatus)) { UnicodeToEfiKeyFlushState (TerminalDevice); TerminalDevice->ResetState = RESET_STATE_DEFAULT; } } // // Fetch one Unicode character from the Unicode FIFO // UnicodeFiFoRemoveOneKey (TerminalDevice, &UnicodeChar); SetDefaultResetState = TRUE; switch (TerminalDevice->InputState) { case INPUT_STATE_DEFAULT: break; case INPUT_STATE_ESC: if (UnicodeChar == LEFTOPENBRACKET) { TerminalDevice->InputState |= INPUT_STATE_LEFTOPENBRACKET; TerminalDevice->ResetState = RESET_STATE_DEFAULT; continue; } if ((UnicodeChar == 'O') && ((TerminalDevice->TerminalType == TerminalTypeVt100) || (TerminalDevice->TerminalType == TerminalTypeTtyTerm) || (TerminalDevice->TerminalType == TerminalTypeXtermR6) || (TerminalDevice->TerminalType == TerminalTypeVt100Plus))) { TerminalDevice->InputState |= INPUT_STATE_O; TerminalDevice->ResetState = RESET_STATE_DEFAULT; continue; } Key.ScanCode = SCAN_NULL; if ((TerminalDevice->TerminalType == TerminalTypeVt100Plus) || (TerminalDevice->TerminalType == TerminalTypeVtUtf8)) { switch (UnicodeChar) { case '1': Key.ScanCode = SCAN_F1; break; case '2': Key.ScanCode = SCAN_F2; break; case '3': Key.ScanCode = SCAN_F3; break; case '4': Key.ScanCode = SCAN_F4; break; case '5': Key.ScanCode = SCAN_F5; break; case '6': Key.ScanCode = SCAN_F6; break; case '7': Key.ScanCode = SCAN_F7; break; case '8': Key.ScanCode = SCAN_F8; break; case '9': Key.ScanCode = SCAN_F9; break; case '0': Key.ScanCode = SCAN_F10; break; case '!': Key.ScanCode = SCAN_F11; break; case '@': Key.ScanCode = SCAN_F12; break; case 'h': Key.ScanCode = SCAN_HOME; break; case 'k': Key.ScanCode = SCAN_END; break; case '+': Key.ScanCode = SCAN_INSERT; break; case '-': Key.ScanCode = SCAN_DELETE; break; case '/': Key.ScanCode = SCAN_PAGE_DOWN; break; case '?': Key.ScanCode = SCAN_PAGE_UP; break; default: break; } } switch (UnicodeChar) { case 'R': if (TerminalDevice->ResetState == RESET_STATE_DEFAULT) { TerminalDevice->ResetState = RESET_STATE_ESC_R; SetDefaultResetState = FALSE; } else if (TerminalDevice->ResetState == RESET_STATE_ESC_R_ESC_R) { gRT->ResetSystem (EfiResetWarm, EFI_SUCCESS, 0, NULL); } Key.ScanCode = SCAN_NULL; break; case 'r': if (TerminalDevice->ResetState == RESET_STATE_ESC_R) { TerminalDevice->ResetState = RESET_STATE_ESC_R_ESC_R; SetDefaultResetState = FALSE; } Key.ScanCode = SCAN_NULL; break; default: break; } if (SetDefaultResetState) { TerminalDevice->ResetState = RESET_STATE_DEFAULT; } if (Key.ScanCode != SCAN_NULL) { Key.UnicodeChar = 0; EfiKeyFiFoInsertOneKey (TerminalDevice, &Key); TerminalDevice->InputState = INPUT_STATE_DEFAULT; UnicodeToEfiKeyFlushState (TerminalDevice); continue; } UnicodeToEfiKeyFlushState (TerminalDevice); break; case INPUT_STATE_ESC | INPUT_STATE_O: TerminalDevice->ResetState = RESET_STATE_DEFAULT; Key.ScanCode = SCAN_NULL; if (TerminalDevice->TerminalType == TerminalTypeVt100) { switch (UnicodeChar) { case 'P': Key.ScanCode = SCAN_F1; break; case 'Q': Key.ScanCode = SCAN_F2; break; case 'w': Key.ScanCode = SCAN_F3; break; case 'x': Key.ScanCode = SCAN_F4; break; case 't': Key.ScanCode = SCAN_F5; break; case 'u': Key.ScanCode = SCAN_F6; break; case 'q': Key.ScanCode = SCAN_F7; break; case 'r': Key.ScanCode = SCAN_F8; break; case 'p': Key.ScanCode = SCAN_F9; break; case 'M': Key.ScanCode = SCAN_F10; break; default: break; } } else if (TerminalDevice->TerminalType == TerminalTypeTtyTerm) { /* Also accept VT100 escape codes for F1-F4, HOME and END for TTY term */ switch (UnicodeChar) { case 'P': Key.ScanCode = SCAN_F1; break; case 'Q': Key.ScanCode = SCAN_F2; break; case 'R': Key.ScanCode = SCAN_F3; break; case 'S': Key.ScanCode = SCAN_F4; break; case 'H': Key.ScanCode = SCAN_HOME; break; case 'F': Key.ScanCode = SCAN_END; break; } } else if (TerminalDevice->TerminalType == TerminalTypeVt100Plus) { switch (UnicodeChar) { case 'P': Key.ScanCode = SCAN_F1; break; case 'Q': Key.ScanCode = SCAN_F2; break; case 'R': Key.ScanCode = SCAN_F3; break; case 'S': Key.ScanCode = SCAN_F4; break; case 'T': Key.ScanCode = SCAN_F5; break; case 'U': Key.ScanCode = SCAN_F6; break; case 'V': Key.ScanCode = SCAN_F7; break; case 'W': Key.ScanCode = SCAN_F8; break; case 'X': Key.ScanCode = SCAN_F9; break; case 'Y': Key.ScanCode = SCAN_F10; break; case 'Z': Key.ScanCode = SCAN_F11; break; case '[': Key.ScanCode = SCAN_F12; break; } } else if (TerminalDevice->TerminalType == TerminalTypeXtermR6) { switch (UnicodeChar) { case 'P': Key.ScanCode = SCAN_F1; break; case 'Q': Key.ScanCode = SCAN_F2; break; case 'R': Key.ScanCode = SCAN_F3; break; case 'S': Key.ScanCode = SCAN_F4; break; } } if (Key.ScanCode != SCAN_NULL) { Key.UnicodeChar = 0; EfiKeyFiFoInsertOneKey (TerminalDevice, &Key); TerminalDevice->InputState = INPUT_STATE_DEFAULT; UnicodeToEfiKeyFlushState (TerminalDevice); continue; } UnicodeToEfiKeyFlushState (TerminalDevice); break; case INPUT_STATE_ESC | INPUT_STATE_LEFTOPENBRACKET: if ((UnicodeChar == '1') && ((TerminalDevice->TerminalType == TerminalTypeXtermR6) || (TerminalDevice->TerminalType == TerminalTypeVt400) || (TerminalDevice->TerminalType == TerminalTypeLinux))) { TerminalDevice->InputState |= INPUT_STATE_1; continue; } if ((UnicodeChar == '2') && ((TerminalDevice->TerminalType == TerminalTypeXtermR6) || (TerminalDevice->TerminalType == TerminalTypeVt400) || (TerminalDevice->TerminalType == TerminalTypeLinux))) { TerminalDevice->InputState |= INPUT_STATE_2; continue; } if ((UnicodeChar == LEFTOPENBRACKET) && (TerminalDevice->TerminalType == TerminalTypeLinux)) { TerminalDevice->InputState |= INPUT_STATE_LEFTOPENBRACKET_2ND; continue; } TerminalDevice->ResetState = RESET_STATE_DEFAULT; Key.ScanCode = SCAN_NULL; if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeVt100) || (TerminalDevice->TerminalType == TerminalTypeVt100Plus) || (TerminalDevice->TerminalType == TerminalTypeVtUtf8) || (TerminalDevice->TerminalType == TerminalTypeTtyTerm) || (TerminalDevice->TerminalType == TerminalTypeLinux) || (TerminalDevice->TerminalType == TerminalTypeXtermR6) || (TerminalDevice->TerminalType == TerminalTypeVt400) || (TerminalDevice->TerminalType == TerminalTypeSCO)) { switch (UnicodeChar) { case 'A': Key.ScanCode = SCAN_UP; break; case 'B': Key.ScanCode = SCAN_DOWN; break; case 'C': Key.ScanCode = SCAN_RIGHT; break; case 'D': Key.ScanCode = SCAN_LEFT; break; case 'H': if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeVt100) || (TerminalDevice->TerminalType == TerminalTypeTtyTerm)) { Key.ScanCode = SCAN_HOME; } break; case 'F': if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeTtyTerm)) { Key.ScanCode = SCAN_END; } break; case 'K': if (TerminalDevice->TerminalType == TerminalTypeVt100) { Key.ScanCode = SCAN_END; } break; case 'L': case '@': if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeVt100)) { Key.ScanCode = SCAN_INSERT; } break; case 'X': if (TerminalDevice->TerminalType == TerminalTypePcAnsi) { Key.ScanCode = SCAN_DELETE; } else if (TerminalDevice->TerminalType == TerminalTypeSCO) { Key.ScanCode = SCAN_F12; } break; case 'P': if (TerminalDevice->TerminalType == TerminalTypeVt100) { Key.ScanCode = SCAN_DELETE; } else if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeSCO)) { Key.ScanCode = SCAN_F4; } break; case 'I': if (TerminalDevice->TerminalType == TerminalTypePcAnsi) { Key.ScanCode = SCAN_PAGE_UP; } break; case 'V': if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeSCO)) { Key.ScanCode = SCAN_F10; } break; case '?': if (TerminalDevice->TerminalType == TerminalTypeVt100) { Key.ScanCode = SCAN_PAGE_UP; } break; case 'G': if (TerminalDevice->TerminalType == TerminalTypePcAnsi) { Key.ScanCode = SCAN_PAGE_DOWN; } break; case 'U': if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeSCO)) { Key.ScanCode = SCAN_F9; } break; case '/': if (TerminalDevice->TerminalType == TerminalTypeVt100) { Key.ScanCode = SCAN_PAGE_DOWN; } break; case 'M': if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeSCO)) { Key.ScanCode = SCAN_F1; } break; case 'N': if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeSCO)) { Key.ScanCode = SCAN_F2; } break; case 'O': if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeSCO)) { Key.ScanCode = SCAN_F3; } break; case 'Q': if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeSCO)) { Key.ScanCode = SCAN_F5; } break; case 'R': if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeSCO)) { Key.ScanCode = SCAN_F6; } break; case 'S': if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeSCO)) { Key.ScanCode = SCAN_F7; } break; case 'T': if ((TerminalDevice->TerminalType == TerminalTypePcAnsi) || (TerminalDevice->TerminalType == TerminalTypeSCO)) { Key.ScanCode = SCAN_F8; } break; case 'W': if (TerminalDevice->TerminalType == TerminalTypeSCO) { Key.ScanCode = SCAN_F11; } break; default: break; } } /* * The VT220 escape codes that the TTY terminal accepts all have * numeric codes, and there are no ambiguous prefixes shared with * other terminal types. */ if ((TerminalDevice->TerminalType == TerminalTypeTtyTerm) && (Key.ScanCode == SCAN_NULL) && (UnicodeChar >= '0') && (UnicodeChar <= '9')) { TerminalDevice->TtyEscapeStr[0] = UnicodeChar; TerminalDevice->TtyEscapeIndex = 1; TerminalDevice->InputState |= INPUT_STATE_LEFTOPENBRACKET_TTY; continue; } if (Key.ScanCode != SCAN_NULL) { Key.UnicodeChar = 0; EfiKeyFiFoInsertOneKey (TerminalDevice, &Key); TerminalDevice->InputState = INPUT_STATE_DEFAULT; UnicodeToEfiKeyFlushState (TerminalDevice); continue; } UnicodeToEfiKeyFlushState (TerminalDevice); break; case INPUT_STATE_ESC | INPUT_STATE_LEFTOPENBRACKET | INPUT_STATE_1: TerminalDevice->ResetState = RESET_STATE_DEFAULT; Key.ScanCode = SCAN_NULL; if ((TerminalDevice->TerminalType == TerminalTypeXtermR6) || (TerminalDevice->TerminalType == TerminalTypeVt400) || (TerminalDevice->TerminalType == TerminalTypeLinux)) { switch (UnicodeChar) { case '1': if (TerminalDevice->TerminalType == TerminalTypeVt400) { Key.ScanCode = SCAN_F1; } break; case '2': if (TerminalDevice->TerminalType == TerminalTypeVt400) { Key.ScanCode = SCAN_F2; } break; case '3': if (TerminalDevice->TerminalType == TerminalTypeVt400) { Key.ScanCode = SCAN_F3; } break; case '4': if (TerminalDevice->TerminalType == TerminalTypeVt400) { Key.ScanCode = SCAN_F4; } break; case '5': if ((TerminalDevice->TerminalType == TerminalTypeXtermR6) || (TerminalDevice->TerminalType == TerminalTypeVt400)) { Key.ScanCode = SCAN_F5; } break; case '7': Key.ScanCode = SCAN_F6; break; case '8': Key.ScanCode = SCAN_F7; break; case '9': Key.ScanCode = SCAN_F8; break; } } if (Key.ScanCode != SCAN_NULL) { Key.UnicodeChar = 0; EfiKeyFiFoInsertOneKey (TerminalDevice, &Key); TerminalDevice->InputState = INPUT_STATE_DEFAULT; UnicodeToEfiKeyFlushState (TerminalDevice); continue; } UnicodeToEfiKeyFlushState (TerminalDevice); break; case INPUT_STATE_ESC | INPUT_STATE_LEFTOPENBRACKET | INPUT_STATE_2: TerminalDevice->InputState = INPUT_STATE_DEFAULT; Key.ScanCode = SCAN_NULL; if ((TerminalDevice->TerminalType == TerminalTypeXtermR6) || (TerminalDevice->TerminalType == TerminalTypeVt400) || (TerminalDevice->TerminalType == TerminalTypeLinux)) { switch (UnicodeChar) { case '0': Key.ScanCode = SCAN_F9; break; case '1': Key.ScanCode = SCAN_F10; break; case '3': Key.ScanCode = SCAN_F11; break; case '4': Key.ScanCode = SCAN_F12; break; } } if (Key.ScanCode != SCAN_NULL) { Key.UnicodeChar = 0; EfiKeyFiFoInsertOneKey (TerminalDevice, &Key); TerminalDevice->InputState = INPUT_STATE_DEFAULT; UnicodeToEfiKeyFlushState (TerminalDevice); continue; } UnicodeToEfiKeyFlushState (TerminalDevice); break; case INPUT_STATE_ESC | INPUT_STATE_LEFTOPENBRACKET | INPUT_STATE_LEFTOPENBRACKET_2ND: TerminalDevice->InputState = INPUT_STATE_DEFAULT; Key.ScanCode = SCAN_NULL; if (TerminalDevice->TerminalType == TerminalTypeLinux) { switch (UnicodeChar) { case 'A': Key.ScanCode = SCAN_F1; break; case 'B': Key.ScanCode = SCAN_F2; break; case 'C': Key.ScanCode = SCAN_F3; break; case 'D': Key.ScanCode = SCAN_F4; break; case 'E': Key.ScanCode = SCAN_F5; break; } } if (Key.ScanCode != SCAN_NULL) { Key.UnicodeChar = 0; EfiKeyFiFoInsertOneKey (TerminalDevice, &Key); TerminalDevice->InputState = INPUT_STATE_DEFAULT; UnicodeToEfiKeyFlushState (TerminalDevice); continue; } UnicodeToEfiKeyFlushState (TerminalDevice); break; case INPUT_STATE_ESC | INPUT_STATE_LEFTOPENBRACKET | INPUT_STATE_LEFTOPENBRACKET_TTY: /* * Here we handle the VT220 escape codes that we accept. This * state is only used by the TTY terminal type. */ Key.ScanCode = SCAN_NULL; if (TerminalDevice->TerminalType == TerminalTypeTtyTerm) { if ((UnicodeChar == '~') && (TerminalDevice->TtyEscapeIndex <= 2)) { UINT16 EscCode; TerminalDevice->TtyEscapeStr[TerminalDevice->TtyEscapeIndex] = 0; /* Terminate string */ EscCode = (UINT16)StrDecimalToUintn (TerminalDevice->TtyEscapeStr); switch (EscCode) { case 2: Key.ScanCode = SCAN_INSERT; break; case 3: Key.ScanCode = SCAN_DELETE; break; case 5: Key.ScanCode = SCAN_PAGE_UP; break; case 6: Key.ScanCode = SCAN_PAGE_DOWN; break; case 11: case 12: case 13: case 14: case 15: Key.ScanCode = SCAN_F1 + EscCode - 11; break; case 17: case 18: case 19: case 20: case 21: Key.ScanCode = SCAN_F6 + EscCode - 17; break; case 23: case 24: Key.ScanCode = SCAN_F11 + EscCode - 23; break; default: break; } } else if (TerminalDevice->TtyEscapeIndex == 1) { /* 2 character escape code */ TerminalDevice->TtyEscapeStr[TerminalDevice->TtyEscapeIndex++] = UnicodeChar; continue; } else { DEBUG ((DEBUG_ERROR, "Unexpected state in escape2\n")); } } TerminalDevice->ResetState = RESET_STATE_DEFAULT; if (Key.ScanCode != SCAN_NULL) { Key.UnicodeChar = 0; EfiKeyFiFoInsertOneKey (TerminalDevice, &Key); TerminalDevice->InputState = INPUT_STATE_DEFAULT; UnicodeToEfiKeyFlushState (TerminalDevice); continue; } UnicodeToEfiKeyFlushState (TerminalDevice); break; default: // // Invalid state. This should never happen. // ASSERT (FALSE); UnicodeToEfiKeyFlushState (TerminalDevice); break; } if (UnicodeChar == ESC) { TerminalDevice->InputState = INPUT_STATE_ESC; } if (UnicodeChar == CSI) { TerminalDevice->InputState = INPUT_STATE_CSI; } if (TerminalDevice->InputState != INPUT_STATE_DEFAULT) { Status = gBS->SetTimer ( TerminalDevice->TwoSecondTimeOut, TimerRelative, (UINT64)20000000 ); ASSERT_EFI_ERROR (Status); continue; } if (SetDefaultResetState) { TerminalDevice->ResetState = RESET_STATE_DEFAULT; } if (UnicodeChar == DEL) { if (TerminalDevice->TerminalType == TerminalTypeTtyTerm) { Key.ScanCode = SCAN_NULL; Key.UnicodeChar = CHAR_BACKSPACE; } else { Key.ScanCode = SCAN_DELETE; Key.UnicodeChar = 0; } } else { Key.ScanCode = SCAN_NULL; Key.UnicodeChar = UnicodeChar; } EfiKeyFiFoInsertOneKey (TerminalDevice, &Key); } }