/** @file
This module contains EBC support routines that are customized based on
the target AArch64 processor.
Copyright (c) 2016, Linaro, Ltd. All rights reserved.
Copyright (c) 2015, The Linux Foundation. All rights reserved.
Copyright (c) 2006 - 2014, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "EbcInt.h"
#include "EbcExecute.h"
#include "EbcDebuggerHook.h"
//
// Amount of space that is not used in the stack
//
#define STACK_REMAIN_SIZE (1024 * 4)
#pragma pack(1)
typedef struct {
UINT32 Instr[3];
UINT32 Magic;
UINT64 EbcEntryPoint;
UINT64 EbcLlEntryPoint;
} EBC_INSTRUCTION_BUFFER;
#pragma pack()
extern CONST EBC_INSTRUCTION_BUFFER mEbcInstructionBufferTemplate;
/**
Begin executing an EBC image.
This is used for Ebc Thunk call.
@return The value returned by the EBC application we're going to run.
**/
UINT64
EFIAPI
EbcLLEbcInterpret (
VOID
);
/**
Begin executing an EBC image.
This is used for Ebc image entrypoint.
@return The value returned by the EBC application we're going to run.
**/
UINT64
EFIAPI
EbcLLExecuteEbcImageEntryPoint (
VOID
);
/**
Pushes a 64 bit unsigned value to the VM stack.
@param VmPtr The pointer to current VM context.
@param Arg The value to be pushed.
**/
VOID
PushU64 (
IN VM_CONTEXT *VmPtr,
IN UINT64 Arg
)
{
//
// Advance the VM stack down, and then copy the argument to the stack.
// Hope it's aligned.
//
VmPtr->Gpr[0] -= sizeof (UINT64);
*(UINT64 *)VmPtr->Gpr[0] = Arg;
return;
}
/**
Begin executing an EBC image.
This is a thunk function.
@param Arg1 The 1st argument.
@param Arg2 The 2nd argument.
@param Arg3 The 3rd argument.
@param Arg4 The 4th argument.
@param Arg5 The 5th argument.
@param Arg6 The 6th argument.
@param Arg7 The 7th argument.
@param Arg8 The 8th argument.
@param EntryPoint The entrypoint of EBC code.
@param Args9_16[] Array containing arguments #9 to #16.
@return The value returned by the EBC application we're going to run.
**/
UINT64
EFIAPI
EbcInterpret (
IN UINTN Arg1,
IN UINTN Arg2,
IN UINTN Arg3,
IN UINTN Arg4,
IN UINTN Arg5,
IN UINTN Arg6,
IN UINTN Arg7,
IN UINTN Arg8,
IN UINTN EntryPoint,
IN CONST UINTN Args9_16[]
)
{
//
// Create a new VM context on the stack
//
VM_CONTEXT VmContext;
UINTN Addr;
EFI_STATUS Status;
UINTN StackIndex;
//
// Get the EBC entry point
//
Addr = EntryPoint;
//
// Now clear out our context
//
ZeroMem ((VOID *)&VmContext, sizeof (VM_CONTEXT));
//
// Set the VM instruction pointer to the correct location in memory.
//
VmContext.Ip = (VMIP)Addr;
//
// Initialize the stack pointer for the EBC. Get the current system stack
// pointer and adjust it down by the max needed for the interpreter.
//
//
// Adjust the VM's stack pointer down.
//
Status = GetEBCStack ((EFI_HANDLE)(UINTN)-1, &VmContext.StackPool, &StackIndex);
if (EFI_ERROR (Status)) {
return Status;
}
VmContext.StackTop = (UINT8 *)VmContext.StackPool + (STACK_REMAIN_SIZE);
VmContext.Gpr[0] = (UINT64)((UINT8 *)VmContext.StackPool + STACK_POOL_SIZE);
VmContext.HighStackBottom = (UINTN)VmContext.Gpr[0];
VmContext.Gpr[0] -= sizeof (UINTN);
//
// Align the stack on a natural boundary.
//
VmContext.Gpr[0] &= ~(VM_REGISTER)(sizeof (UINTN) - 1);
//
// Put a magic value in the stack gap, then adjust down again.
//
*(UINTN *)(UINTN)(VmContext.Gpr[0]) = (UINTN)VM_STACK_KEY_VALUE;
VmContext.StackMagicPtr = (UINTN *)(UINTN)VmContext.Gpr[0];
//
// The stack upper to LowStackTop is belong to the VM.
//
VmContext.LowStackTop = (UINTN)VmContext.Gpr[0];
//
// For the worst case, assume there are 4 arguments passed in registers, store
// them to VM's stack.
//
PushU64 (&VmContext, (UINT64)Args9_16[7]);
PushU64 (&VmContext, (UINT64)Args9_16[6]);
PushU64 (&VmContext, (UINT64)Args9_16[5]);
PushU64 (&VmContext, (UINT64)Args9_16[4]);
PushU64 (&VmContext, (UINT64)Args9_16[3]);
PushU64 (&VmContext, (UINT64)Args9_16[2]);
PushU64 (&VmContext, (UINT64)Args9_16[1]);
PushU64 (&VmContext, (UINT64)Args9_16[0]);
PushU64 (&VmContext, (UINT64)Arg8);
PushU64 (&VmContext, (UINT64)Arg7);
PushU64 (&VmContext, (UINT64)Arg6);
PushU64 (&VmContext, (UINT64)Arg5);
PushU64 (&VmContext, (UINT64)Arg4);
PushU64 (&VmContext, (UINT64)Arg3);
PushU64 (&VmContext, (UINT64)Arg2);
PushU64 (&VmContext, (UINT64)Arg1);
//
// Interpreter assumes 64-bit return address is pushed on the stack.
// AArch64 does not do this so pad the stack accordingly.
//
PushU64 (&VmContext, (UINT64)0);
PushU64 (&VmContext, (UINT64)0x1234567887654321ULL);
//
// For AArch64, this is where we say our return address is
//
VmContext.StackRetAddr = (UINT64)VmContext.Gpr[0];
//
// We need to keep track of where the EBC stack starts. This way, if the EBC
// accesses any stack variables above its initial stack setting, then we know
// it's accessing variables passed into it, which means the data is on the
// VM's stack.
// When we're called, on the stack (high to low) we have the parameters, the
// return address, then the saved ebp. Save the pointer to the return address.
// EBC code knows that's there, so should look above it for function parameters.
// The offset is the size of locals (VMContext + Addr + saved ebp).
// Note that the interpreter assumes there is a 16 bytes of return address on
// the stack too, so adjust accordingly.
// VmContext.HighStackBottom = (UINTN)(Addr + sizeof (VmContext) + sizeof (Addr));
//
//
// Begin executing the EBC code
//
EbcDebuggerHookEbcInterpret (&VmContext);
EbcExecute (&VmContext);
//
// Return the value in R[7] unless there was an error
//
ReturnEBCStack (StackIndex);
return (UINT64)VmContext.Gpr[7];
}
/**
Begin executing an EBC image.
@param ImageHandle image handle for the EBC application we're executing
@param SystemTable standard system table passed into an driver's entry
point
@param EntryPoint The entrypoint of EBC code.
@return The value returned by the EBC application we're going to run.
**/
UINT64
EFIAPI
ExecuteEbcImageEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable,
IN UINTN EntryPoint
)
{
//
// Create a new VM context on the stack
//
VM_CONTEXT VmContext;
UINTN Addr;
EFI_STATUS Status;
UINTN StackIndex;
//
// Get the EBC entry point
//
Addr = EntryPoint;
//
// Now clear out our context
//
ZeroMem ((VOID *)&VmContext, sizeof (VM_CONTEXT));
//
// Save the image handle so we can track the thunks created for this image
//
VmContext.ImageHandle = ImageHandle;
VmContext.SystemTable = SystemTable;
//
// Set the VM instruction pointer to the correct location in memory.
//
VmContext.Ip = (VMIP)Addr;
//
// Initialize the stack pointer for the EBC. Get the current system stack
// pointer and adjust it down by the max needed for the interpreter.
//
Status = GetEBCStack (ImageHandle, &VmContext.StackPool, &StackIndex);
if (EFI_ERROR (Status)) {
return Status;
}
VmContext.StackTop = (UINT8 *)VmContext.StackPool + (STACK_REMAIN_SIZE);
VmContext.Gpr[0] = (UINT64)((UINT8 *)VmContext.StackPool + STACK_POOL_SIZE);
VmContext.HighStackBottom = (UINTN)VmContext.Gpr[0];
VmContext.Gpr[0] -= sizeof (UINTN);
//
// Put a magic value in the stack gap, then adjust down again
//
*(UINTN *)(UINTN)(VmContext.Gpr[0]) = (UINTN)VM_STACK_KEY_VALUE;
VmContext.StackMagicPtr = (UINTN *)(UINTN)VmContext.Gpr[0];
//
// Align the stack on a natural boundary
VmContext.Gpr[0] &= ~(VM_REGISTER)(sizeof (UINTN) - 1);
//
VmContext.LowStackTop = (UINTN)VmContext.Gpr[0];
//
// Simply copy the image handle and system table onto the EBC stack.
// Greatly simplifies things by not having to spill the args.
//
PushU64 (&VmContext, (UINT64)SystemTable);
PushU64 (&VmContext, (UINT64)ImageHandle);
//
// VM pushes 16-bytes for return address. Simulate that here.
//
PushU64 (&VmContext, (UINT64)0);
PushU64 (&VmContext, (UINT64)0x1234567887654321ULL);
//
// For AArch64, this is where we say our return address is
//
VmContext.StackRetAddr = (UINT64)VmContext.Gpr[0];
//
// Entry function needn't access high stack context, simply
// put the stack pointer here.
//
//
// Begin executing the EBC code
//
EbcDebuggerHookExecuteEbcImageEntryPoint (&VmContext);
EbcExecute (&VmContext);
//
// Return the value in R[7] unless there was an error
//
ReturnEBCStack (StackIndex);
return (UINT64)VmContext.Gpr[7];
}
/**
Create thunks for an EBC image entry point, or an EBC protocol service.
@param ImageHandle Image handle for the EBC image. If not null, then
we're creating a thunk for an image entry point.
@param EbcEntryPoint Address of the EBC code that the thunk is to call
@param Thunk Returned thunk we create here
@param Flags Flags indicating options for creating the thunk
@retval EFI_SUCCESS The thunk was created successfully.
@retval EFI_INVALID_PARAMETER The parameter of EbcEntryPoint is not 16-bit
aligned.
@retval EFI_OUT_OF_RESOURCES There is not enough memory to created the EBC
Thunk.
@retval EFI_BUFFER_TOO_SMALL EBC_THUNK_SIZE is not larger enough.
**/
EFI_STATUS
EbcCreateThunks (
IN EFI_HANDLE ImageHandle,
IN VOID *EbcEntryPoint,
OUT VOID **Thunk,
IN UINT32 Flags
)
{
EBC_INSTRUCTION_BUFFER *InstructionBuffer;
//
// Check alignment of pointer to EBC code
//
if ((UINT32)(UINTN)EbcEntryPoint & 0x01) {
return EFI_INVALID_PARAMETER;
}
InstructionBuffer = EbcAllocatePoolForThunk (sizeof (EBC_INSTRUCTION_BUFFER));
if (InstructionBuffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
//
// Give them the address of our buffer we're going to fix up
//
*Thunk = InstructionBuffer;
//
// Copy whole thunk instruction buffer template
//
CopyMem (
InstructionBuffer,
&mEbcInstructionBufferTemplate,
sizeof (EBC_INSTRUCTION_BUFFER)
);
//
// Patch EbcEntryPoint and EbcLLEbcInterpret
//
InstructionBuffer->EbcEntryPoint = (UINT64)EbcEntryPoint;
if ((Flags & FLAG_THUNK_ENTRY_POINT) != 0) {
InstructionBuffer->EbcLlEntryPoint = (UINT64)EbcLLExecuteEbcImageEntryPoint;
} else {
InstructionBuffer->EbcLlEntryPoint = (UINT64)EbcLLEbcInterpret;
}
//
// Add the thunk to the list for this image. Do this last since the add
// function flushes the cache for us.
//
EbcAddImageThunk (
ImageHandle,
InstructionBuffer,
sizeof (EBC_INSTRUCTION_BUFFER)
);
return EFI_SUCCESS;
}
/**
This function is called to execute an EBC CALLEX instruction.
The function check the callee's content to see whether it is common native
code or a thunk to another piece of EBC code.
If the callee is common native code, use EbcLLCAllEXASM to manipulate,
otherwise, set the VM->IP to target EBC code directly to avoid another VM
be startup which cost time and stack space.
@param VmPtr Pointer to a VM context.
@param FuncAddr Callee's address
@param NewStackPointer New stack pointer after the call
@param FramePtr New frame pointer after the call
@param Size The size of call instruction
**/
VOID
EbcLLCALLEX (
IN VM_CONTEXT *VmPtr,
IN UINTN FuncAddr,
IN UINTN NewStackPointer,
IN VOID *FramePtr,
IN UINT8 Size
)
{
CONST EBC_INSTRUCTION_BUFFER *InstructionBuffer;
//
// Processor specific code to check whether the callee is a thunk to EBC.
//
InstructionBuffer = (EBC_INSTRUCTION_BUFFER *)FuncAddr;
if (CompareMem (
InstructionBuffer,
&mEbcInstructionBufferTemplate,
sizeof (EBC_INSTRUCTION_BUFFER) - 2 * sizeof (UINT64)
) == 0)
{
//
// The callee is a thunk to EBC, adjust the stack pointer down 16 bytes and
// put our return address and frame pointer on the VM stack.
// Then set the VM's IP to new EBC code.
//
VmPtr->Gpr[0] -= 8;
VmWriteMemN (VmPtr, (UINTN)VmPtr->Gpr[0], (UINTN)FramePtr);
VmPtr->FramePtr = (VOID *)(UINTN)VmPtr->Gpr[0];
VmPtr->Gpr[0] -= 8;
VmWriteMem64 (VmPtr, (UINTN)VmPtr->Gpr[0], (UINT64)(UINTN)(VmPtr->Ip + Size));
VmPtr->Ip = (VMIP)InstructionBuffer->EbcEntryPoint;
} else {
//
// The callee is not a thunk to EBC, call native code,
// and get return value.
//
VmPtr->Gpr[7] = EbcLLCALLEXNative (FuncAddr, NewStackPointer, FramePtr);
//
// Advance the IP.
//
VmPtr->Ip += Size;
}
}