/** @file Platform BDS customizations. Copyright (c) 2004 - 2019, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "BdsPlatform.h" #include #include #include #include #include #include #include // // Global data // VOID *mEfiDevPathNotifyReg; EFI_EVENT mEfiDevPathEvent; VOID *mEmuVariableEventReg; EFI_EVENT mEmuVariableEvent; UINT16 mHostBridgeDevId; // // Table of host IRQs matching PCI IRQs A-D // (for configuring PCI Interrupt Line register) // CONST UINT8 PciHostIrqs[] = { 0x0a, // LNKA, LNKE 0x0a, // LNKB, LNKF 0x0b, // LNKC, LNKG 0x0b // LNKD, LNKH }; // // Type definitions // typedef EFI_STATUS (EFIAPI *PROTOCOL_INSTANCE_CALLBACK)( IN EFI_HANDLE Handle, IN VOID *Instance, IN VOID *Context ); /** @param[in] Handle - Handle of PCI device instance @param[in] PciIo - PCI IO protocol instance @param[in] Pci - PCI Header register block **/ typedef EFI_STATUS (EFIAPI *VISIT_PCI_INSTANCE_CALLBACK)( IN EFI_HANDLE Handle, IN EFI_PCI_IO_PROTOCOL *PciIo, IN PCI_TYPE00 *Pci ); // // Function prototypes // EFI_STATUS VisitAllInstancesOfProtocol ( IN EFI_GUID *Id, IN PROTOCOL_INSTANCE_CALLBACK CallBackFunction, IN VOID *Context ); EFI_STATUS VisitAllPciInstancesOfProtocol ( IN VISIT_PCI_INSTANCE_CALLBACK CallBackFunction ); VOID InstallDevicePathCallback ( VOID ); VOID PlatformRegisterFvBootOption ( EFI_GUID *FileGuid, CHAR16 *Description, UINT32 Attributes ) { EFI_STATUS Status; INTN OptionIndex; EFI_BOOT_MANAGER_LOAD_OPTION NewOption; EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions; UINTN BootOptionCount; MEDIA_FW_VOL_FILEPATH_DEVICE_PATH FileNode; EFI_LOADED_IMAGE_PROTOCOL *LoadedImage; EFI_DEVICE_PATH_PROTOCOL *DevicePath; Status = gBS->HandleProtocol ( gImageHandle, &gEfiLoadedImageProtocolGuid, (VOID **)&LoadedImage ); ASSERT_EFI_ERROR (Status); EfiInitializeFwVolDevicepathNode (&FileNode, FileGuid); DevicePath = DevicePathFromHandle (LoadedImage->DeviceHandle); ASSERT (DevicePath != NULL); DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&FileNode ); ASSERT (DevicePath != NULL); Status = EfiBootManagerInitializeLoadOption ( &NewOption, LoadOptionNumberUnassigned, LoadOptionTypeBoot, Attributes, Description, DevicePath, NULL, 0 ); ASSERT_EFI_ERROR (Status); FreePool (DevicePath); BootOptions = EfiBootManagerGetLoadOptions ( &BootOptionCount, LoadOptionTypeBoot ); OptionIndex = EfiBootManagerFindLoadOption ( &NewOption, BootOptions, BootOptionCount ); if (OptionIndex == -1) { Status = EfiBootManagerAddLoadOptionVariable (&NewOption, MAX_UINTN); ASSERT_EFI_ERROR (Status); } EfiBootManagerFreeLoadOption (&NewOption); EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount); } /** Remove all MemoryMapped(...)/FvFile(...) and Fv(...)/FvFile(...) boot options whose device paths do not resolve exactly to an FvFile in the system. This removes any boot options that point to binaries built into the firmware and have become stale due to any of the following: - DXEFV's base address or size changed (historical), - DXEFV's FvNameGuid changed, - the FILE_GUID of the pointed-to binary changed, - the referenced binary is no longer built into the firmware. EfiBootManagerFindLoadOption() used in PlatformRegisterFvBootOption() only avoids exact duplicates. **/ VOID RemoveStaleFvFileOptions ( VOID ) { EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions; UINTN BootOptionCount; UINTN Index; BootOptions = EfiBootManagerGetLoadOptions ( &BootOptionCount, LoadOptionTypeBoot ); for (Index = 0; Index < BootOptionCount; ++Index) { EFI_DEVICE_PATH_PROTOCOL *Node1, *Node2, *SearchNode; EFI_STATUS Status; EFI_HANDLE FvHandle; // // If the device path starts with neither MemoryMapped(...) nor Fv(...), // then keep the boot option. // Node1 = BootOptions[Index].FilePath; if (!((DevicePathType (Node1) == HARDWARE_DEVICE_PATH) && (DevicePathSubType (Node1) == HW_MEMMAP_DP)) && !((DevicePathType (Node1) == MEDIA_DEVICE_PATH) && (DevicePathSubType (Node1) == MEDIA_PIWG_FW_VOL_DP))) { continue; } // // If the second device path node is not FvFile(...), then keep the boot // option. // Node2 = NextDevicePathNode (Node1); if ((DevicePathType (Node2) != MEDIA_DEVICE_PATH) || (DevicePathSubType (Node2) != MEDIA_PIWG_FW_FILE_DP)) { continue; } // // Locate the Firmware Volume2 protocol instance that is denoted by the // boot option. If this lookup fails (i.e., the boot option references a // firmware volume that doesn't exist), then we'll proceed to delete the // boot option. // SearchNode = Node1; Status = gBS->LocateDevicePath ( &gEfiFirmwareVolume2ProtocolGuid, &SearchNode, &FvHandle ); if (!EFI_ERROR (Status)) { // // The firmware volume was found; now let's see if it contains the FvFile // identified by GUID. // EFI_FIRMWARE_VOLUME2_PROTOCOL *FvProtocol; MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *FvFileNode; UINTN BufferSize; EFI_FV_FILETYPE FoundType; EFI_FV_FILE_ATTRIBUTES FileAttributes; UINT32 AuthenticationStatus; Status = gBS->HandleProtocol ( FvHandle, &gEfiFirmwareVolume2ProtocolGuid, (VOID **)&FvProtocol ); ASSERT_EFI_ERROR (Status); FvFileNode = (MEDIA_FW_VOL_FILEPATH_DEVICE_PATH *)Node2; // // Buffer==NULL means we request metadata only: BufferSize, FoundType, // FileAttributes. // Status = FvProtocol->ReadFile ( FvProtocol, &FvFileNode->FvFileName, // NameGuid NULL, // Buffer &BufferSize, &FoundType, &FileAttributes, &AuthenticationStatus ); if (!EFI_ERROR (Status)) { // // The FvFile was found. Keep the boot option. // continue; } } // // Delete the boot option. // Status = EfiBootManagerDeleteLoadOptionVariable ( BootOptions[Index].OptionNumber, LoadOptionTypeBoot ); DEBUG_CODE_BEGIN (); CHAR16 *DevicePathString; DevicePathString = ConvertDevicePathToText ( BootOptions[Index].FilePath, FALSE, FALSE ); DEBUG (( EFI_ERROR (Status) ? DEBUG_WARN : DEBUG_VERBOSE, "%a: removing stale Boot#%04x %s: %r\n", __func__, (UINT32)BootOptions[Index].OptionNumber, DevicePathString == NULL ? L"" : DevicePathString, Status )); if (DevicePathString != NULL) { FreePool (DevicePathString); } DEBUG_CODE_END (); } EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount); } VOID RestrictBootOptionsToFirmware ( VOID ) { EFI_BOOT_MANAGER_LOAD_OPTION *BootOptions; UINTN BootOptionCount; UINTN Index; BootOptions = EfiBootManagerGetLoadOptions ( &BootOptionCount, LoadOptionTypeBoot ); for (Index = 0; Index < BootOptionCount; ++Index) { EFI_DEVICE_PATH_PROTOCOL *Node1; // // If the device path starts with Fv(...), // then keep the boot option. // Node1 = BootOptions[Index].FilePath; if (((DevicePathType (Node1) == MEDIA_DEVICE_PATH) && (DevicePathSubType (Node1) == MEDIA_PIWG_FW_VOL_DP))) { continue; } // // Delete the boot option. // EfiBootManagerDeleteLoadOptionVariable ( BootOptions[Index].OptionNumber, LoadOptionTypeBoot ); } EfiBootManagerFreeLoadOptions (BootOptions, BootOptionCount); } VOID PlatformRegisterOptionsAndKeys ( VOID ) { EFI_STATUS Status; EFI_INPUT_KEY Enter; EFI_INPUT_KEY F2; EFI_INPUT_KEY Esc; EFI_BOOT_MANAGER_LOAD_OPTION BootOption; // // Register ENTER as CONTINUE key // Enter.ScanCode = SCAN_NULL; Enter.UnicodeChar = CHAR_CARRIAGE_RETURN; Status = EfiBootManagerRegisterContinueKeyOption (0, &Enter, NULL); ASSERT_EFI_ERROR (Status); // // Map F2 to Boot Manager Menu // F2.ScanCode = SCAN_F2; F2.UnicodeChar = CHAR_NULL; Esc.ScanCode = SCAN_ESC; Esc.UnicodeChar = CHAR_NULL; Status = EfiBootManagerGetBootManagerMenu (&BootOption); ASSERT_EFI_ERROR (Status); Status = EfiBootManagerAddKeyOptionVariable ( NULL, (UINT16)BootOption.OptionNumber, 0, &F2, NULL ); ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED); Status = EfiBootManagerAddKeyOptionVariable ( NULL, (UINT16)BootOption.OptionNumber, 0, &Esc, NULL ); ASSERT (Status == EFI_SUCCESS || Status == EFI_ALREADY_STARTED); } EFI_STATUS EFIAPI ConnectRootBridge ( IN EFI_HANDLE RootBridgeHandle, IN VOID *Instance, IN VOID *Context ); STATIC EFI_STATUS EFIAPI ConnectVirtioPciRng ( IN EFI_HANDLE Handle, IN VOID *Instance, IN VOID *Context ); STATIC VOID SaveS3BootScript ( VOID ); // // BDS Platform Functions // /** Do the platform init, can be customized by OEM/IBV Possible things that can be done in PlatformBootManagerBeforeConsole: > Update console variable: 1. include hot-plug devices; > 2. Clear ConIn and add SOL for AMT > Register new Driver#### or Boot#### > Register new Key####: e.g.: F12 > Signal ReadyToLock event > Authentication action: 1. connect Auth devices; > 2. Identify auto logon user. **/ VOID EFIAPI PlatformBootManagerBeforeConsole ( VOID ) { EFI_HANDLE Handle; EFI_STATUS Status; UINT16 FrontPageTimeout; RETURN_STATUS PcdStatus; DEBUG ((DEBUG_INFO, "PlatformBootManagerBeforeConsole\n")); InstallDevicePathCallback (); VisitAllInstancesOfProtocol ( &gEfiPciRootBridgeIoProtocolGuid, ConnectRootBridge, NULL ); // // Signal the ACPI platform driver that it can download QEMU ACPI tables. // EfiEventGroupSignal (&gRootBridgesConnectedEventGroupGuid); // // We can't signal End-of-Dxe earlier than this. Namely, End-of-Dxe triggers // the preparation of S3 system information. That logic has a hard dependency // on the presence of the FACS ACPI table. Since our ACPI tables are only // installed after PCI enumeration completes, we must not trigger the S3 save // earlier, hence we can't signal End-of-Dxe earlier. // EfiEventGroupSignal (&gEfiEndOfDxeEventGroupGuid); if (PcdGetBool (PcdAcpiS3Enable)) { // // Save the boot script too. Note that this will require us to emit the // DxeSmmReadyToLock event just below, which in turn locks down SMM. // SaveS3BootScript (); } // // We need to connect all trusted consoles for TCG PP. Here we treat all // consoles in OVMF to be trusted consoles. // // Cloud Hypervisor doesn't emulate any LPC bridge, which is why it must // rely on the serial I/O port to be connected as a console. It reuses the // definition from Xen as it is very generic. // PlatformInitializeConsole ( (XenDetected () || PcdGet16 (PcdOvmfHostBridgePciDevId) == CLOUDHV_DEVICE_ID) ? gXenPlatformConsole : gPlatformConsole ); // // Process TPM PPI request; this may require keyboard input // Tcg2PhysicalPresenceLibProcessRequest (NULL); // // Prevent further changes to LockBoxes or SMRAM. // Any TPM 2 Physical Presence Interface opcode must be handled before. // Handle = NULL; Status = gBS->InstallProtocolInterface ( &Handle, &gEfiDxeSmmReadyToLockProtocolGuid, EFI_NATIVE_INTERFACE, NULL ); ASSERT_EFI_ERROR (Status); // // Dispatch deferred images after EndOfDxe event and ReadyToLock // installation. // EfiBootManagerDispatchDeferredImages (); // // GPU passthrough only allows Console enablement after ROM image load // PlatformInitializeConsole ( XenDetected () ? gXenPlatformConsole : gPlatformConsole ); FrontPageTimeout = GetFrontPageTimeoutFromQemu (); PcdStatus = PcdSet16S (PcdPlatformBootTimeOut, FrontPageTimeout); ASSERT_RETURN_ERROR (PcdStatus); // // Reflect the PCD in the standard Timeout variable. // Status = gRT->SetVariable ( EFI_TIME_OUT_VARIABLE_NAME, &gEfiGlobalVariableGuid, (EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS), sizeof FrontPageTimeout, &FrontPageTimeout ); DEBUG (( EFI_ERROR (Status) ? DEBUG_ERROR : DEBUG_VERBOSE, "%a: SetVariable(%s, %u): %r\n", __func__, EFI_TIME_OUT_VARIABLE_NAME, FrontPageTimeout, Status )); if (!FeaturePcdGet (PcdBootRestrictToFirmware)) { PlatformRegisterOptionsAndKeys (); } // // Install both VIRTIO_DEVICE_PROTOCOL and (dependent) EFI_RNG_PROTOCOL // instances on Virtio PCI RNG devices. // VisitAllInstancesOfProtocol ( &gEfiPciIoProtocolGuid, ConnectVirtioPciRng, NULL ); } EFI_STATUS EFIAPI ConnectRootBridge ( IN EFI_HANDLE RootBridgeHandle, IN VOID *Instance, IN VOID *Context ) { EFI_STATUS Status; // // Make the PCI bus driver connect the root bridge, non-recursively. This // will produce a number of child handles with PciIo on them. // Status = gBS->ConnectController ( RootBridgeHandle, // ControllerHandle NULL, // DriverImageHandle NULL, // RemainingDevicePath -- produce all // children FALSE // Recursive ); return Status; } STATIC EFI_STATUS EFIAPI ConnectVirtioPciRng ( IN EFI_HANDLE Handle, IN VOID *Instance, IN VOID *Context ) { EFI_PCI_IO_PROTOCOL *PciIo; EFI_STATUS Status; UINT16 VendorId; UINT16 DeviceId; UINT8 RevisionId; BOOLEAN Virtio10; UINT16 SubsystemId; PciIo = Instance; // // Read and check VendorId. // Status = PciIo->Pci.Read ( PciIo, EfiPciIoWidthUint16, PCI_VENDOR_ID_OFFSET, 1, &VendorId ); if (EFI_ERROR (Status)) { goto Error; } if (VendorId != VIRTIO_VENDOR_ID) { return EFI_SUCCESS; } // // Read DeviceId and RevisionId. // Status = PciIo->Pci.Read ( PciIo, EfiPciIoWidthUint16, PCI_DEVICE_ID_OFFSET, 1, &DeviceId ); if (EFI_ERROR (Status)) { goto Error; } Status = PciIo->Pci.Read ( PciIo, EfiPciIoWidthUint8, PCI_REVISION_ID_OFFSET, 1, &RevisionId ); if (EFI_ERROR (Status)) { goto Error; } // // From DeviceId and RevisionId, determine whether the device is a // modern-only Virtio 1.0 device. In case of Virtio 1.0, DeviceId can // immediately be restricted to VIRTIO_SUBSYSTEM_ENTROPY_SOURCE, and // SubsystemId will only play a sanity-check role. Otherwise, DeviceId can // only be sanity-checked, and SubsystemId will decide. // if ((DeviceId == 0x1040 + VIRTIO_SUBSYSTEM_ENTROPY_SOURCE) && (RevisionId >= 0x01)) { Virtio10 = TRUE; } else if ((DeviceId >= 0x1000) && (DeviceId <= 0x103F) && (RevisionId == 0x00)) { Virtio10 = FALSE; } else { return EFI_SUCCESS; } // // Read and check SubsystemId as dictated by Virtio10. // Status = PciIo->Pci.Read ( PciIo, EfiPciIoWidthUint16, PCI_SUBSYSTEM_ID_OFFSET, 1, &SubsystemId ); if (EFI_ERROR (Status)) { goto Error; } if ((Virtio10 && (SubsystemId >= 0x40)) || (!Virtio10 && (SubsystemId == VIRTIO_SUBSYSTEM_ENTROPY_SOURCE))) { Status = gBS->ConnectController ( Handle, // ControllerHandle NULL, // DriverImageHandle -- connect all drivers NULL, // RemainingDevicePath -- produce all child handles FALSE // Recursive -- don't follow child handles ); if (EFI_ERROR (Status)) { goto Error; } } return EFI_SUCCESS; Error: DEBUG ((DEBUG_ERROR, "%a: %r\n", __func__, Status)); return Status; } /** Add IsaKeyboard to ConIn; add IsaSerial to ConOut, ConIn, ErrOut. @param[in] DeviceHandle Handle of the LPC Bridge device. @retval EFI_SUCCESS Console devices on the LPC bridge have been added to ConOut, ConIn, and ErrOut. @return Error codes, due to EFI_DEVICE_PATH_PROTOCOL missing from DeviceHandle. **/ EFI_STATUS PrepareLpcBridgeDevicePath ( IN EFI_HANDLE DeviceHandle ) { EFI_STATUS Status; EFI_DEVICE_PATH_PROTOCOL *DevicePath; EFI_DEVICE_PATH_PROTOCOL *TempDevicePath; CHAR16 *DevPathStr; DevicePath = NULL; Status = gBS->HandleProtocol ( DeviceHandle, &gEfiDevicePathProtocolGuid, (VOID *)&DevicePath ); if (EFI_ERROR (Status)) { return Status; } TempDevicePath = DevicePath; // // Register Keyboard // DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gPnpPs2KeyboardDeviceNode ); EfiBootManagerUpdateConsoleVariable (ConIn, DevicePath, NULL); // // Register COM1 // DevicePath = TempDevicePath; gPnp16550ComPortDeviceNode.UID = 0; DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gPnp16550ComPortDeviceNode ); DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode ); DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode ); // // Print Device Path // DevPathStr = ConvertDevicePathToText (DevicePath, FALSE, FALSE); if (DevPathStr != NULL) { DEBUG (( DEBUG_INFO, "BdsPlatform.c+%d: COM%d DevPath: %s\n", DEBUG_LINE_NUMBER, gPnp16550ComPortDeviceNode.UID + 1, DevPathStr )); FreePool (DevPathStr); } EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL); EfiBootManagerUpdateConsoleVariable (ConIn, DevicePath, NULL); EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL); // // Register COM2 // DevicePath = TempDevicePath; gPnp16550ComPortDeviceNode.UID = 1; DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gPnp16550ComPortDeviceNode ); DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode ); DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode ); // // Print Device Path // DevPathStr = ConvertDevicePathToText (DevicePath, FALSE, FALSE); if (DevPathStr != NULL) { DEBUG (( DEBUG_INFO, "BdsPlatform.c+%d: COM%d DevPath: %s\n", DEBUG_LINE_NUMBER, gPnp16550ComPortDeviceNode.UID + 1, DevPathStr )); FreePool (DevPathStr); } EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL); EfiBootManagerUpdateConsoleVariable (ConIn, DevicePath, NULL); EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL); return EFI_SUCCESS; } typedef struct { VENDOR_DEVICE_PATH Guid; EFI_DEVICE_PATH_PROTOCOL End; } SERIAL_DEVICE_PATH; SERIAL_DEVICE_PATH serialDevicePath = { { { HARDWARE_DEVICE_PATH, HW_VENDOR_DP, { sizeof (VENDOR_DEVICE_PATH), 0 } }, EDKII_SERIAL_PORT_LIB_VENDOR_GUID }, { END_DEVICE_PATH_TYPE, END_ENTIRE_DEVICE_PATH_SUBTYPE, { sizeof (EFI_DEVICE_PATH_PROTOCOL), 0 } } }; VOID PrepareMicrovmDevicePath ( VOID ) { EFI_DEVICE_PATH_PROTOCOL *DevicePath; UINT16 HostBridgeDevId; HostBridgeDevId = PcdGet16 (PcdOvmfHostBridgePciDevId); if (HostBridgeDevId != MICROVM_PSEUDO_DEVICE_ID) { return; } DevicePath = (EFI_DEVICE_PATH_PROTOCOL *)&serialDevicePath; DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode ); DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode ); EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL); EfiBootManagerUpdateConsoleVariable (ConIn, DevicePath, NULL); EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL); } EFI_STATUS GetGopDevicePath ( IN EFI_DEVICE_PATH_PROTOCOL *PciDevicePath, OUT EFI_DEVICE_PATH_PROTOCOL **GopDevicePath ) { UINTN Index; EFI_STATUS Status; EFI_HANDLE PciDeviceHandle; EFI_DEVICE_PATH_PROTOCOL *TempDevicePath; EFI_DEVICE_PATH_PROTOCOL *TempPciDevicePath; UINTN GopHandleCount; EFI_HANDLE *GopHandleBuffer; if ((PciDevicePath == NULL) || (GopDevicePath == NULL)) { return EFI_INVALID_PARAMETER; } // // Initialize the GopDevicePath to be PciDevicePath // *GopDevicePath = PciDevicePath; TempPciDevicePath = PciDevicePath; Status = gBS->LocateDevicePath ( &gEfiDevicePathProtocolGuid, &TempPciDevicePath, &PciDeviceHandle ); if (EFI_ERROR (Status)) { return Status; } // // Try to connect this handle, so that GOP driver could start on this // device and create child handles with GraphicsOutput Protocol installed // on them, then we get device paths of these child handles and select // them as possible console device. // gBS->ConnectController (PciDeviceHandle, NULL, NULL, FALSE); Status = gBS->LocateHandleBuffer ( ByProtocol, &gEfiGraphicsOutputProtocolGuid, NULL, &GopHandleCount, &GopHandleBuffer ); if (!EFI_ERROR (Status)) { // // Add all the child handles as possible Console Device // for (Index = 0; Index < GopHandleCount; Index++) { Status = gBS->HandleProtocol ( GopHandleBuffer[Index], &gEfiDevicePathProtocolGuid, (VOID *)&TempDevicePath ); if (EFI_ERROR (Status)) { continue; } if (CompareMem ( PciDevicePath, TempDevicePath, GetDevicePathSize (PciDevicePath) - END_DEVICE_PATH_LENGTH ) == 0) { // // In current implementation, we only enable one of the child handles // as console device, i.e. sotre one of the child handle's device // path to variable "ConOut" // In future, we could select all child handles to be console device // *GopDevicePath = TempDevicePath; // // Delete the PCI device's path that added by // GetPlugInPciVgaDevicePath(). Add the integrity GOP device path. // EfiBootManagerUpdateConsoleVariable (ConOutDev, NULL, PciDevicePath); EfiBootManagerUpdateConsoleVariable (ConOutDev, TempDevicePath, NULL); } } gBS->FreePool (GopHandleBuffer); } return EFI_SUCCESS; } /** Add PCI display to ConOut. @param[in] DeviceHandle Handle of the PCI display device. @retval EFI_SUCCESS The PCI display device has been added to ConOut. @return Error codes, due to EFI_DEVICE_PATH_PROTOCOL missing from DeviceHandle. **/ EFI_STATUS PreparePciDisplayDevicePath ( IN EFI_HANDLE DeviceHandle ) { EFI_STATUS Status; EFI_DEVICE_PATH_PROTOCOL *DevicePath; EFI_DEVICE_PATH_PROTOCOL *GopDevicePath; DevicePath = NULL; GopDevicePath = NULL; Status = gBS->HandleProtocol ( DeviceHandle, &gEfiDevicePathProtocolGuid, (VOID *)&DevicePath ); if (EFI_ERROR (Status)) { return Status; } GetGopDevicePath (DevicePath, &GopDevicePath); DevicePath = GopDevicePath; EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL); return EFI_SUCCESS; } /** Add PCI Serial to ConOut, ConIn, ErrOut. @param[in] DeviceHandle Handle of the PCI serial device. @retval EFI_SUCCESS The PCI serial device has been added to ConOut, ConIn, ErrOut. @return Error codes, due to EFI_DEVICE_PATH_PROTOCOL missing from DeviceHandle. **/ EFI_STATUS PreparePciSerialDevicePath ( IN EFI_HANDLE DeviceHandle ) { EFI_STATUS Status; EFI_DEVICE_PATH_PROTOCOL *DevicePath; DevicePath = NULL; Status = gBS->HandleProtocol ( DeviceHandle, &gEfiDevicePathProtocolGuid, (VOID *)&DevicePath ); if (EFI_ERROR (Status)) { return Status; } DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode ); DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode ); EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL); EfiBootManagerUpdateConsoleVariable (ConIn, DevicePath, NULL); EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL); return EFI_SUCCESS; } EFI_STATUS PrepareVirtioSerialDevicePath ( IN EFI_HANDLE DeviceHandle ) { EFI_STATUS Status; EFI_DEVICE_PATH_PROTOCOL *DevicePath; DevicePath = NULL; Status = gBS->HandleProtocol ( DeviceHandle, &gEfiDevicePathProtocolGuid, (VOID *)&DevicePath ); if (EFI_ERROR (Status)) { return Status; } gPnp16550ComPortDeviceNode.UID = 0; DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gPnp16550ComPortDeviceNode ); DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gUartDeviceNode ); DevicePath = AppendDevicePathNode ( DevicePath, (EFI_DEVICE_PATH_PROTOCOL *)&gTerminalTypeDeviceNode ); EfiBootManagerUpdateConsoleVariable (ConOut, DevicePath, NULL); EfiBootManagerUpdateConsoleVariable (ConIn, DevicePath, NULL); EfiBootManagerUpdateConsoleVariable (ErrOut, DevicePath, NULL); return EFI_SUCCESS; } EFI_STATUS VisitAllInstancesOfProtocol ( IN EFI_GUID *Id, IN PROTOCOL_INSTANCE_CALLBACK CallBackFunction, IN VOID *Context ) { EFI_STATUS Status; UINTN HandleCount; EFI_HANDLE *HandleBuffer; UINTN Index; VOID *Instance; // // Start to check all the PciIo to find all possible device // HandleCount = 0; HandleBuffer = NULL; Status = gBS->LocateHandleBuffer ( ByProtocol, Id, NULL, &HandleCount, &HandleBuffer ); if (EFI_ERROR (Status)) { return Status; } for (Index = 0; Index < HandleCount; Index++) { Status = gBS->HandleProtocol (HandleBuffer[Index], Id, &Instance); if (EFI_ERROR (Status)) { continue; } Status = (*CallBackFunction)( HandleBuffer[Index], Instance, Context ); } gBS->FreePool (HandleBuffer); return EFI_SUCCESS; } EFI_STATUS EFIAPI VisitingAPciInstance ( IN EFI_HANDLE Handle, IN VOID *Instance, IN VOID *Context ) { EFI_STATUS Status; EFI_PCI_IO_PROTOCOL *PciIo; PCI_TYPE00 Pci; PciIo = (EFI_PCI_IO_PROTOCOL *)Instance; // // Check for all PCI device // Status = PciIo->Pci.Read ( PciIo, EfiPciIoWidthUint32, 0, sizeof (Pci) / sizeof (UINT32), &Pci ); if (EFI_ERROR (Status)) { return Status; } return (*(VISIT_PCI_INSTANCE_CALLBACK)(UINTN)Context)( Handle, PciIo, &Pci ); } EFI_STATUS VisitAllPciInstances ( IN VISIT_PCI_INSTANCE_CALLBACK CallBackFunction ) { return VisitAllInstancesOfProtocol ( &gEfiPciIoProtocolGuid, VisitingAPciInstance, (VOID *)(UINTN)CallBackFunction ); } /** Do platform specific PCI Device check and add them to ConOut, ConIn, ErrOut. @param[in] Handle - Handle of PCI device instance @param[in] PciIo - PCI IO protocol instance @param[in] Pci - PCI Header register block @retval EFI_SUCCESS - PCI Device check and Console variable update successfully. @retval EFI_STATUS - PCI Device check or Console variable update fail. **/ EFI_STATUS EFIAPI DetectAndPreparePlatformPciDevicePath ( IN EFI_HANDLE Handle, IN EFI_PCI_IO_PROTOCOL *PciIo, IN PCI_TYPE00 *Pci ) { EFI_STATUS Status; Status = PciIo->Attributes ( PciIo, EfiPciIoAttributeOperationEnable, EFI_PCI_DEVICE_ENABLE, NULL ); ASSERT_EFI_ERROR (Status); // // Here we decide whether it is LPC Bridge // if ((IS_PCI_LPC (Pci)) || ((IS_PCI_ISA_PDECODE (Pci)) && (Pci->Hdr.VendorId == 0x8086) && (Pci->Hdr.DeviceId == 0x7000) ) ) { // // Add IsaKeyboard to ConIn, // add IsaSerial to ConOut, ConIn, ErrOut // DEBUG ((DEBUG_INFO, "Found LPC Bridge device\n")); PrepareLpcBridgeDevicePath (Handle); return EFI_SUCCESS; } // // Here we decide which Serial device to enable in PCI bus // if (IS_PCI_16550SERIAL (Pci)) { // // Add them to ConOut, ConIn, ErrOut. // DEBUG ((DEBUG_INFO, "Found PCI 16550 SERIAL device\n")); PreparePciSerialDevicePath (Handle); return EFI_SUCCESS; } // // Here we decide which display device to enable in PCI bus // if (IS_PCI_DISPLAY (Pci)) { // // Add them to ConOut. // DEBUG ((DEBUG_INFO, "Found PCI display device\n")); PreparePciDisplayDevicePath (Handle); return EFI_SUCCESS; } if (((Pci->Hdr.VendorId == 0x1af4) && (Pci->Hdr.DeviceId == 0x1003)) || ((Pci->Hdr.VendorId == 0x1af4) && (Pci->Hdr.DeviceId == 0x1043))) { DEBUG ((DEBUG_INFO, "Found virtio serial device\n")); PrepareVirtioSerialDevicePath (Handle); return EFI_SUCCESS; } return Status; } EFI_STATUS EFIAPI DetectAndPreparePlatformVirtioDevicePath ( IN EFI_HANDLE Handle, IN VOID *Instance, IN VOID *Context ) { VIRTIO_DEVICE_PROTOCOL *VirtIo = (VIRTIO_DEVICE_PROTOCOL *)Instance; DEBUG ((DEBUG_INFO, "%a:%d: id %d\n", __func__, __LINE__, VirtIo->SubSystemDeviceId)); switch (VirtIo->SubSystemDeviceId) { case VIRTIO_SUBSYSTEM_CONSOLE: PrepareVirtioSerialDevicePath (Handle); break; default: /* nothing */ break; } return EFI_SUCCESS; } /** Connect the predefined platform default console device. Always try to find and enable PCI display devices. @param[in] PlatformConsole Predefined platform default console device array. **/ VOID PlatformInitializeConsole ( IN PLATFORM_CONSOLE_CONNECT_ENTRY *PlatformConsole ) { UINTN Index; // // Do platform specific PCI Device check and add them to ConOut, ConIn, // ErrOut // VisitAllPciInstances (DetectAndPreparePlatformPciDevicePath); VisitAllInstancesOfProtocol ( &gVirtioDeviceProtocolGuid, DetectAndPreparePlatformVirtioDevicePath, NULL ); PrepareMicrovmDevicePath (); // // Have chance to connect the platform default console, // the platform default console is the minimum device group // the platform should support // for (Index = 0; PlatformConsole[Index].DevicePath != NULL; ++Index) { // // Update the console variable with the connect type // if ((PlatformConsole[Index].ConnectType & CONSOLE_IN) == CONSOLE_IN) { EfiBootManagerUpdateConsoleVariable ( ConIn, PlatformConsole[Index].DevicePath, NULL ); } if ((PlatformConsole[Index].ConnectType & CONSOLE_OUT) == CONSOLE_OUT) { EfiBootManagerUpdateConsoleVariable ( ConOut, PlatformConsole[Index].DevicePath, NULL ); } if ((PlatformConsole[Index].ConnectType & STD_ERROR) == STD_ERROR) { EfiBootManagerUpdateConsoleVariable ( ErrOut, PlatformConsole[Index].DevicePath, NULL ); } } } /** Configure PCI Interrupt Line register for applicable devices Ported from SeaBIOS, src/fw/pciinit.c, *_pci_slot_get_irq() @param[in] Handle - Handle of PCI device instance @param[in] PciIo - PCI IO protocol instance @param[in] PciHdr - PCI Header register block @retval EFI_SUCCESS - PCI Interrupt Line register configured successfully. **/ EFI_STATUS EFIAPI SetPciIntLine ( IN EFI_HANDLE Handle, IN EFI_PCI_IO_PROTOCOL *PciIo, IN PCI_TYPE00 *PciHdr ) { EFI_DEVICE_PATH_PROTOCOL *DevPathNode; EFI_DEVICE_PATH_PROTOCOL *DevPath; UINTN RootSlot; UINTN Idx; UINT8 IrqLine; EFI_STATUS Status; UINT32 RootBusNumber; Status = EFI_SUCCESS; if (PciHdr->Device.InterruptPin != 0) { DevPathNode = DevicePathFromHandle (Handle); ASSERT (DevPathNode != NULL); DevPath = DevPathNode; RootBusNumber = 0; if ((DevicePathType (DevPathNode) == ACPI_DEVICE_PATH) && (DevicePathSubType (DevPathNode) == ACPI_DP) && (((ACPI_HID_DEVICE_PATH *)DevPathNode)->HID == EISA_PNP_ID (0x0A03))) { RootBusNumber = ((ACPI_HID_DEVICE_PATH *)DevPathNode)->UID; } // // Compute index into PciHostIrqs[] table by walking // the device path and adding up all device numbers // Status = EFI_NOT_FOUND; RootSlot = 0; Idx = PciHdr->Device.InterruptPin - 1; while (!IsDevicePathEnd (DevPathNode)) { if ((DevicePathType (DevPathNode) == HARDWARE_DEVICE_PATH) && (DevicePathSubType (DevPathNode) == HW_PCI_DP)) { Idx += ((PCI_DEVICE_PATH *)DevPathNode)->Device; // // Unlike SeaBIOS, which starts climbing from the leaf device // up toward the root, we traverse the device path starting at // the root moving toward the leaf node. // The slot number of the top-level parent bridge is needed for // Q35 cases with more than 24 slots on the root bus. // if (Status != EFI_SUCCESS) { Status = EFI_SUCCESS; RootSlot = ((PCI_DEVICE_PATH *)DevPathNode)->Device; } } DevPathNode = NextDevicePathNode (DevPathNode); } if (EFI_ERROR (Status)) { return Status; } if ((RootBusNumber == 0) && (RootSlot == 0)) { DEBUG (( DEBUG_ERROR, "%a: PCI host bridge (00:00.0) should have no interrupts!\n", __func__ )); ASSERT (FALSE); } // // Final PciHostIrqs[] index calculation depends on the platform // and should match SeaBIOS src/fw/pciinit.c *_pci_slot_get_irq() // switch (mHostBridgeDevId) { case INTEL_82441_DEVICE_ID: Idx -= 1; break; case INTEL_Q35_MCH_DEVICE_ID: // // SeaBIOS contains the following comment: // "Slots 0-24 rotate slot:pin mapping similar to piix above, but // with a different starting index - see q35-acpi-dsdt.dsl. // // Slots 25-31 all use LNKA mapping (or LNKE, but A:D = E:H)" // if (RootSlot > 24) { // // in this case, subtract back out RootSlot from Idx // (SeaBIOS never adds it to begin with, but that would make our // device path traversal loop above too awkward) // Idx -= RootSlot; } break; default: ASSERT (FALSE); // should never get here } Idx %= ARRAY_SIZE (PciHostIrqs); IrqLine = PciHostIrqs[Idx]; DEBUG_CODE_BEGIN (); { CHAR16 *DevPathString; STATIC CHAR16 Fallback[] = L""; UINTN Segment, Bus, Device, Function; DevPathString = ConvertDevicePathToText (DevPath, FALSE, FALSE); if (DevPathString == NULL) { DevPathString = Fallback; } Status = PciIo->GetLocation (PciIo, &Segment, &Bus, &Device, &Function); ASSERT_EFI_ERROR (Status); DEBUG (( DEBUG_VERBOSE, "%a: [%02x:%02x.%x] %s -> 0x%02x\n", __func__, (UINT32)Bus, (UINT32)Device, (UINT32)Function, DevPathString, IrqLine )); if (DevPathString != Fallback) { FreePool (DevPathString); } } DEBUG_CODE_END (); // // Set PCI Interrupt Line register for this device to PciHostIrqs[Idx] // Status = PciIo->Pci.Write ( PciIo, EfiPciIoWidthUint8, PCI_INT_LINE_OFFSET, 1, &IrqLine ); } return Status; } VOID PciAcpiInitialization ( ) { UINTN Pmba; // // Query Host Bridge DID to determine platform type // mHostBridgeDevId = PcdGet16 (PcdOvmfHostBridgePciDevId); switch (mHostBridgeDevId) { case INTEL_82441_DEVICE_ID: Pmba = POWER_MGMT_REGISTER_PIIX4 (PIIX4_PMBA); // // 00:01.0 ISA Bridge (PIIX4) LNK routing targets // PciWrite8 (PCI_LIB_ADDRESS (0, 1, 0, 0x60), PciHostIrqs[0]); // A PciWrite8 (PCI_LIB_ADDRESS (0, 1, 0, 0x61), PciHostIrqs[1]); // B PciWrite8 (PCI_LIB_ADDRESS (0, 1, 0, 0x62), PciHostIrqs[2]); // C PciWrite8 (PCI_LIB_ADDRESS (0, 1, 0, 0x63), PciHostIrqs[3]); // D break; case INTEL_Q35_MCH_DEVICE_ID: Pmba = POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE); // // 00:1f.0 LPC Bridge (Q35) LNK routing targets // PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x60), PciHostIrqs[0]); // A PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x61), PciHostIrqs[1]); // B PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x62), PciHostIrqs[2]); // C PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x63), PciHostIrqs[3]); // D PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x68), PciHostIrqs[0]); // E PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x69), PciHostIrqs[1]); // F PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x6a), PciHostIrqs[2]); // G PciWrite8 (PCI_LIB_ADDRESS (0, 0x1f, 0, 0x6b), PciHostIrqs[3]); // H break; case MICROVM_PSEUDO_DEVICE_ID: case CLOUDHV_DEVICE_ID: return; default: if (XenDetected ()) { // // There is no PCI bus in this case. // return; } DEBUG (( DEBUG_ERROR, "%a: Unknown Host Bridge Device ID: 0x%04x\n", __func__, mHostBridgeDevId )); ASSERT (FALSE); return; } // // Initialize PCI_INTERRUPT_LINE for applicable present PCI devices // VisitAllPciInstances (SetPciIntLine); // // Set ACPI SCI_EN bit in PMCNTRL // IoOr16 ((PciRead32 (Pmba) & ~BIT0) + 4, BIT0); } EFI_STATUS EFIAPI ConnectRecursivelyIfPciMassStorage ( IN EFI_HANDLE Handle, IN EFI_PCI_IO_PROTOCOL *Instance, IN PCI_TYPE00 *PciHeader ) { EFI_STATUS Status; EFI_DEVICE_PATH_PROTOCOL *DevicePath; CHAR16 *DevPathStr; // // Recognize PCI Mass Storage, and Xen PCI devices // if (IS_CLASS1 (PciHeader, PCI_CLASS_MASS_STORAGE) || (XenDetected () && IS_CLASS2 (PciHeader, 0xFF, 0x80))) { DevicePath = NULL; Status = gBS->HandleProtocol ( Handle, &gEfiDevicePathProtocolGuid, (VOID *)&DevicePath ); if (EFI_ERROR (Status)) { return Status; } // // Print Device Path // DevPathStr = ConvertDevicePathToText (DevicePath, FALSE, FALSE); if (DevPathStr != NULL) { DEBUG (( DEBUG_INFO, "Found %s device: %s\n", (IS_CLASS1 (PciHeader, PCI_CLASS_MASS_STORAGE) ? L"Mass Storage" : L"Xen" ), DevPathStr )); FreePool (DevPathStr); } Status = gBS->ConnectController (Handle, NULL, NULL, TRUE); if (EFI_ERROR (Status)) { return Status; } } return EFI_SUCCESS; } /** This notification function is invoked when the EMU Variable FVB has been changed. @param Event The event that occurred @param Context For EFI compatibility. Not used. **/ VOID EFIAPI EmuVariablesUpdatedCallback ( IN EFI_EVENT Event, IN VOID *Context ) { DEBUG ((DEBUG_INFO, "EmuVariablesUpdatedCallback\n")); UpdateNvVarsOnFileSystem (); } EFI_STATUS EFIAPI VisitingFileSystemInstance ( IN EFI_HANDLE Handle, IN VOID *Instance, IN VOID *Context ) { EFI_STATUS Status; STATIC BOOLEAN ConnectedToFileSystem = FALSE; RETURN_STATUS PcdStatus; if (ConnectedToFileSystem) { return EFI_ALREADY_STARTED; } Status = ConnectNvVarsToFileSystem (Handle); if (EFI_ERROR (Status)) { return Status; } ConnectedToFileSystem = TRUE; mEmuVariableEvent = EfiCreateProtocolNotifyEvent ( &gEfiDevicePathProtocolGuid, TPL_CALLBACK, EmuVariablesUpdatedCallback, NULL, &mEmuVariableEventReg ); PcdStatus = PcdSet64S ( PcdEmuVariableEvent, (UINT64)(UINTN)mEmuVariableEvent ); ASSERT_RETURN_ERROR (PcdStatus); return EFI_SUCCESS; } VOID PlatformBdsRestoreNvVarsFromHardDisk ( ) { VisitAllPciInstances (ConnectRecursivelyIfPciMassStorage); VisitAllInstancesOfProtocol ( &gEfiSimpleFileSystemProtocolGuid, VisitingFileSystemInstance, NULL ); } /** Connect with predefined platform connect sequence. The OEM/IBV can customize with their own connect sequence. **/ VOID PlatformBdsConnectSequence ( VOID ) { UINTN Index; RETURN_STATUS Status; DEBUG ((DEBUG_INFO, "PlatformBdsConnectSequence\n")); Index = 0; // // Here we can get the customized platform connect sequence // Notes: we can connect with new variable which record the // last time boots connect device path sequence // while (gPlatformConnectSequence[Index] != NULL) { // // Build the platform boot option // EfiBootManagerConnectDevicePath (gPlatformConnectSequence[Index], NULL); Index++; } Status = ConnectDevicesFromQemu (); if (RETURN_ERROR (Status)) { // // Just use the simple policy to connect all devices // DEBUG ((DEBUG_INFO, "EfiBootManagerConnectAll\n")); EfiBootManagerConnectAll (); } } /** Save the S3 boot script. Note that DxeSmmReadyToLock must be signaled after this function returns; otherwise the script wouldn't be saved actually. **/ STATIC VOID SaveS3BootScript ( VOID ) { EFI_STATUS Status; EFI_S3_SAVE_STATE_PROTOCOL *BootScript; STATIC CONST UINT8 Info[] = { 0xDE, 0xAD, 0xBE, 0xEF }; Status = gBS->LocateProtocol ( &gEfiS3SaveStateProtocolGuid, NULL, (VOID **)&BootScript ); ASSERT_EFI_ERROR (Status); // // Despite the opcode documentation in the PI spec, the protocol // implementation embeds a deep copy of the info in the boot script, rather // than storing just a pointer to runtime or NVS storage. // Status = BootScript->Write ( BootScript, EFI_BOOT_SCRIPT_INFORMATION_OPCODE, (UINT32)sizeof Info, (EFI_PHYSICAL_ADDRESS)(UINTN)&Info ); ASSERT_EFI_ERROR (Status); } /** Do the platform specific action after the console is ready Possible things that can be done in PlatformBootManagerAfterConsole: > Console post action: > Dynamically switch output mode from 100x31 to 80x25 for certain senarino > Signal console ready platform customized event > Run diagnostics like memory testing > Connect certain devices > Dispatch aditional option roms > Special boot: e.g.: USB boot, enter UI **/ VOID EFIAPI PlatformBootManagerAfterConsole ( VOID ) { EFI_BOOT_MODE BootMode; DEBUG ((DEBUG_INFO, "PlatformBootManagerAfterConsole\n")); if (PcdGetBool (PcdOvmfFlashVariablesEnable)) { DEBUG (( DEBUG_INFO, "PlatformBdsPolicyBehavior: not restoring NvVars " "from disk since flash variables appear to be supported.\n" )); } else { // // Try to restore variables from the hard disk early so // they can be used for the other BDS connect operations. // PlatformBdsRestoreNvVarsFromHardDisk (); } // // Get current Boot Mode // BootMode = GetBootModeHob (); DEBUG ((DEBUG_INFO, "Boot Mode:%x\n", BootMode)); // // Go the different platform policy with different boot mode // Notes: this part code can be change with the table policy // ASSERT (BootMode == BOOT_WITH_FULL_CONFIGURATION); // // Logo show // BootLogoEnableLogo (); // // Set PCI Interrupt Line registers and ACPI SCI_EN // PciAcpiInitialization (); // // Write qemu bootorder to efi variables // StoreQemuBootOrder (); // // Process QEMU's -kernel command line option // TryRunningQemuKernel (); // // Perform some platform specific connect sequence // if (FeaturePcdGet (PcdBootRestrictToFirmware)) { RestrictBootOptionsToFirmware (); } else { PlatformBdsConnectSequence (); EfiBootManagerRefreshAllBootOption (); } // // Register UEFI Shell // PlatformRegisterFvBootOption ( &gUefiShellFileGuid, L"EFI Internal Shell", LOAD_OPTION_ACTIVE ); // // Register Grub // PlatformRegisterFvBootOption ( &gGrubFileGuid, L"Grub Bootloader", LOAD_OPTION_ACTIVE ); RemoveStaleFvFileOptions (); SetBootOrderFromQemu (); PlatformBmPrintScRegisterHandler (); } /** This notification function is invoked when an instance of the EFI_DEVICE_PATH_PROTOCOL is produced. @param Event The event that occurred @param Context For EFI compatibility. Not used. **/ VOID EFIAPI NotifyDevPath ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_HANDLE Handle; EFI_STATUS Status; UINTN BufferSize; EFI_DEVICE_PATH_PROTOCOL *DevPathNode; ATAPI_DEVICE_PATH *Atapi; // // Examine all new handles // for ( ; ;) { // // Get the next handle // BufferSize = sizeof (Handle); Status = gBS->LocateHandle ( ByRegisterNotify, NULL, mEfiDevPathNotifyReg, &BufferSize, &Handle ); // // If not found, we're done // if (EFI_NOT_FOUND == Status) { break; } if (EFI_ERROR (Status)) { continue; } // // Get the DevicePath protocol on that handle // Status = gBS->HandleProtocol ( Handle, &gEfiDevicePathProtocolGuid, (VOID **)&DevPathNode ); ASSERT_EFI_ERROR (Status); while (!IsDevicePathEnd (DevPathNode)) { // // Find the handler to dump this device path node // if ( (DevicePathType (DevPathNode) == MESSAGING_DEVICE_PATH) && (DevicePathSubType (DevPathNode) == MSG_ATAPI_DP) ) { Atapi = (ATAPI_DEVICE_PATH *)DevPathNode; PciOr16 ( PCI_LIB_ADDRESS ( 0, 1, 1, (Atapi->PrimarySecondary == 1) ? 0x42 : 0x40 ), BIT15 ); } // // Next device path node // DevPathNode = NextDevicePathNode (DevPathNode); } } return; } VOID InstallDevicePathCallback ( VOID ) { DEBUG ((DEBUG_INFO, "Registered NotifyDevPath Event\n")); mEfiDevPathEvent = EfiCreateProtocolNotifyEvent ( &gEfiDevicePathProtocolGuid, TPL_CALLBACK, NotifyDevPath, NULL, &mEfiDevPathNotifyReg ); } /** This function is called each second during the boot manager waits the timeout. @param TimeoutRemain The remaining timeout. **/ VOID EFIAPI PlatformBootManagerWaitCallback ( UINT16 TimeoutRemain ) { EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION Black; EFI_GRAPHICS_OUTPUT_BLT_PIXEL_UNION White; UINT16 TimeoutInitial; TimeoutInitial = PcdGet16 (PcdPlatformBootTimeOut); // // If PcdPlatformBootTimeOut is set to zero, then we consider // that no progress update should be enacted (since we'd only // ever display a one-shot progress of either 0% or 100%). // if (TimeoutInitial == 0) { return; } Black.Raw = 0x00000000; White.Raw = 0x00FFFFFF; BootLogoUpdateProgress ( White.Pixel, Black.Pixel, L"Start boot option", White.Pixel, (TimeoutInitial - TimeoutRemain) * 100 / TimeoutInitial, 0 ); } /** The function is called when no boot option could be launched, including platform recovery options and options pointing to applications built into firmware volumes. If this function returns, BDS attempts to enter an infinite loop. **/ VOID EFIAPI PlatformBootManagerUnableToBoot ( VOID ) { EFI_STATUS Status; EFI_INPUT_KEY Key; EFI_BOOT_MANAGER_LOAD_OPTION BootManagerMenu; UINTN Index; if (FeaturePcdGet (PcdBootRestrictToFirmware)) { AsciiPrint ( "%a: No bootable option was found.\n", gEfiCallerBaseName ); CpuDeadLoop (); } // // BootManagerMenu doesn't contain the correct information when return status // is EFI_NOT_FOUND. // Status = EfiBootManagerGetBootManagerMenu (&BootManagerMenu); if (EFI_ERROR (Status)) { return; } // // Normally BdsDxe does not print anything to the system console, but this is // a last resort -- the end-user will likely not see any DEBUG messages // logged in this situation. // // AsciiPrint() will NULL-check gST->ConOut internally. We check gST->ConIn // here to see if it makes sense to request and wait for a keypress. // if (gST->ConIn != NULL) { AsciiPrint ( "%a: No bootable option or device was found.\n" "%a: Press any key to enter the Boot Manager Menu.\n", gEfiCallerBaseName, gEfiCallerBaseName ); Status = gBS->WaitForEvent (1, &gST->ConIn->WaitForKey, &Index); ASSERT_EFI_ERROR (Status); ASSERT (Index == 0); // // Drain any queued keys. // while (!EFI_ERROR (gST->ConIn->ReadKeyStroke (gST->ConIn, &Key))) { // // just throw away Key // } } for ( ; ;) { EfiBootManagerBoot (&BootManagerMenu); } }