/** @file
RISC-V Timer Architectural Protocol definitions
Copyright (c) 2019, Hewlett Packard Enterprise Development LP. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef TIMER_H_
#define TIMER_H_
#include
#include
#include
#include
#include
#include
#include
//
// RISC-V use 100ns timer.
// The default timer tick duration is set to 10 ms = 10 * 1000 * 10 100 ns units
//
#define DEFAULT_TIMER_TICK_DURATION 100000
#define RISCV_CPU_FEATURE_SSTC_BITMASK BIT1
extern VOID
RiscvSetTimerPeriod (
UINT32 TimerPeriod
);
//
// Function Prototypes
//
/**
Initialize the Timer Architectural Protocol driver
@param ImageHandle ImageHandle of the loaded driver
@param SystemTable Pointer to the System Table
@retval EFI_SUCCESS Timer Architectural Protocol created
@retval EFI_OUT_OF_RESOURCES Not enough resources available to initialize driver.
@retval EFI_DEVICE_ERROR A device error occured attempting to initialize the driver.
**/
EFI_STATUS
EFIAPI
TimerDriverInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
;
/**
This function adjusts the period of timer interrupts to the value specified
by TimerPeriod. If the timer period is updated, then the selected timer
period is stored in EFI_TIMER.TimerPeriod, and EFI_SUCCESS is returned. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is returned.
If an error occurs while attempting to update the timer period, then the
timer hardware will be put back in its state prior to this call, and
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt
is disabled. This is not the same as disabling the CPU's interrupts.
Instead, it must either turn off the timer hardware, or it must adjust the
interrupt controller so that a CPU interrupt is not generated when the timer
interrupt fires.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param NotifyFunction The rate to program the timer interrupt in 100 nS units. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is
returned. If the timer is programmable, then the timer period
will be rounded up to the nearest timer period that is supported
by the timer hardware. If TimerPeriod is set to 0, then the
timer interrupts will be disabled.
@retval EFI_SUCCESS The timer period was changed.
@retval EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.
@retval EFI_DEVICE_ERROR The timer period could not be changed due to a device error.
**/
EFI_STATUS
EFIAPI
TimerDriverRegisterHandler (
IN EFI_TIMER_ARCH_PROTOCOL *This,
IN EFI_TIMER_NOTIFY NotifyFunction
)
;
/**
This function adjusts the period of timer interrupts to the value specified
by TimerPeriod. If the timer period is updated, then the selected timer
period is stored in EFI_TIMER.TimerPeriod, and EFI_SUCCESS is returned. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is returned.
If an error occurs while attempting to update the timer period, then the
timer hardware will be put back in its state prior to this call, and
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt
is disabled. This is not the same as disabling the CPU's interrupts.
Instead, it must either turn off the timer hardware, or it must adjust the
interrupt controller so that a CPU interrupt is not generated when the timer
interrupt fires.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param TimerPeriod The rate to program the timer interrupt in 100 nS units. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is
returned. If the timer is programmable, then the timer period
will be rounded up to the nearest timer period that is supported
by the timer hardware. If TimerPeriod is set to 0, then the
timer interrupts will be disabled.
@retval EFI_SUCCESS The timer period was changed.
@retval EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.
@retval EFI_DEVICE_ERROR The timer period could not be changed due to a device error.
**/
EFI_STATUS
EFIAPI
TimerDriverSetTimerPeriod (
IN EFI_TIMER_ARCH_PROTOCOL *This,
IN UINT64 TimerPeriod
)
;
/**
This function retrieves the period of timer interrupts in 100 ns units,
returns that value in TimerPeriod, and returns EFI_SUCCESS. If TimerPeriod
is NULL, then EFI_INVALID_PARAMETER is returned. If a TimerPeriod of 0 is
returned, then the timer is currently disabled.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param TimerPeriod A pointer to the timer period to retrieve in 100 ns units. If
0 is returned, then the timer is currently disabled.
@retval EFI_SUCCESS The timer period was returned in TimerPeriod.
@retval EFI_INVALID_PARAMETER TimerPeriod is NULL.
**/
EFI_STATUS
EFIAPI
TimerDriverGetTimerPeriod (
IN EFI_TIMER_ARCH_PROTOCOL *This,
OUT UINT64 *TimerPeriod
)
;
/**
This function generates a soft timer interrupt. If the platform does not support soft
timer interrupts, then EFI_UNSUPPORTED is returned. Otherwise, EFI_SUCCESS is returned.
If a handler has been registered through the EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()
service, then a soft timer interrupt will be generated. If the timer interrupt is
enabled when this service is called, then the registered handler will be invoked. The
registered handler should not be able to distinguish a hardware-generated timer
interrupt from a software-generated timer interrupt.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@retval EFI_SUCCESS The soft timer interrupt was generated.
@retval EFI_UNSUPPORTEDT The platform does not support the generation of soft timer interrupts.
**/
EFI_STATUS
EFIAPI
TimerDriverGenerateSoftInterrupt (
IN EFI_TIMER_ARCH_PROTOCOL *This
)
;
#endif