/** @file Local APIC Library. This local APIC library instance supports x2APIC capable processors which have xAPIC and x2APIC modes. Copyright (c) 2010 - 2023, Intel Corporation. All rights reserved.
Copyright (c) 2017 - 2024, AMD Inc. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include #include #include #include #include #include #include #include #include #include #include #include // // Library internal functions // /** Some MSRs in TDX are accessed via TdCall. Some are directly read/write from/to CPU. @param MsrIndex Index of the MSR @retval TRUE MSR accessed via TdCall. @retval FALSE MSR accessed not via TdCall. **/ BOOLEAN AccessMsrTdxCall ( IN UINT32 MsrIndex ) { if (!TdIsEnabled ()) { return FALSE; } switch (MsrIndex) { case MSR_IA32_X2APIC_TPR: case MSR_IA32_X2APIC_PPR: case MSR_IA32_X2APIC_EOI: case MSR_IA32_X2APIC_ISR0: case MSR_IA32_X2APIC_ISR1: case MSR_IA32_X2APIC_ISR2: case MSR_IA32_X2APIC_ISR3: case MSR_IA32_X2APIC_ISR4: case MSR_IA32_X2APIC_ISR5: case MSR_IA32_X2APIC_ISR6: case MSR_IA32_X2APIC_ISR7: case MSR_IA32_X2APIC_TMR0: case MSR_IA32_X2APIC_TMR1: case MSR_IA32_X2APIC_TMR2: case MSR_IA32_X2APIC_TMR3: case MSR_IA32_X2APIC_TMR4: case MSR_IA32_X2APIC_TMR5: case MSR_IA32_X2APIC_TMR6: case MSR_IA32_X2APIC_TMR7: case MSR_IA32_X2APIC_IRR0: case MSR_IA32_X2APIC_IRR1: case MSR_IA32_X2APIC_IRR2: case MSR_IA32_X2APIC_IRR3: case MSR_IA32_X2APIC_IRR4: case MSR_IA32_X2APIC_IRR5: case MSR_IA32_X2APIC_IRR6: case MSR_IA32_X2APIC_IRR7: return FALSE; default: break; } return TRUE; } /** Read MSR value. @param MsrIndex Index of the MSR to read @retval 64-bit Value of MSR. **/ UINT64 LocalApicReadMsrReg64 ( IN UINT32 MsrIndex ) { UINT64 Val; UINT64 Status; if (AccessMsrTdxCall (MsrIndex)) { Status = TdVmCall (TDVMCALL_RDMSR, (UINT64)MsrIndex, 0, 0, 0, &Val); if (Status != 0) { TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0); } } else { Val = AsmReadMsr64 (MsrIndex); } return Val; } /** Write to MSR. @param MsrIndex Index of the MSR to write to @param Value Value to be written to the MSR @return Value **/ UINT64 LocalApicWriteMsrReg64 ( IN UINT32 MsrIndex, IN UINT64 Value ) { UINT64 Status; if (AccessMsrTdxCall (MsrIndex)) { Status = TdVmCall (TDVMCALL_WRMSR, (UINT64)MsrIndex, Value, 0, 0, 0); if (Status != 0) { TdVmCall (TDVMCALL_HALT, 0, 0, 0, 0, 0); } } else { AsmWriteMsr64 (MsrIndex, Value); } return Value; } /** Read MSR value. @param MsrIndex Index of the MSR to read @retval 32-bit Value of MSR. **/ UINT32 LocalApicReadMsrReg32 ( IN UINT32 MsrIndex ) { return (UINT32)LocalApicReadMsrReg64 (MsrIndex); } /** Write to MSR. @param MsrIndex Index of the MSR to write to @param Value Value to be written to the MSR @return Value **/ UINT32 LocalApicWriteMsrReg32 ( IN UINT32 MsrIndex, IN UINT32 Value ) { return (UINT32)LocalApicWriteMsrReg64 (MsrIndex, Value); } /** Determine if the CPU supports the Local APIC Base Address MSR. @retval TRUE The CPU supports the Local APIC Base Address MSR. @retval FALSE The CPU does not support the Local APIC Base Address MSR. **/ BOOLEAN LocalApicBaseAddressMsrSupported ( VOID ) { UINT32 RegEax; UINTN FamilyId; AsmCpuid (1, &RegEax, NULL, NULL, NULL); FamilyId = BitFieldRead32 (RegEax, 8, 11); if ((FamilyId == 0x04) || (FamilyId == 0x05)) { // // CPUs with a FamilyId of 0x04 or 0x05 do not support the // Local APIC Base Address MSR // return FALSE; } return TRUE; } /** Retrieve the base address of local APIC. @return The base address of local APIC. **/ UINTN EFIAPI GetLocalApicBaseAddress ( VOID ) { MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr; if (!LocalApicBaseAddressMsrSupported ()) { // // If CPU does not support Local APIC Base Address MSR, then retrieve // Local APIC Base Address from PCD // return PcdGet32 (PcdCpuLocalApicBaseAddress); } ApicBaseMsr.Uint64 = LocalApicReadMsrReg64 (MSR_IA32_APIC_BASE); return (UINTN)(LShiftU64 ((UINT64)ApicBaseMsr.Bits.ApicBaseHi, 32)) + (((UINTN)ApicBaseMsr.Bits.ApicBase) << 12); } /** Set the base address of local APIC. If BaseAddress is not aligned on a 4KB boundary, then ASSERT(). @param[in] BaseAddress Local APIC base address to be set. **/ VOID EFIAPI SetLocalApicBaseAddress ( IN UINTN BaseAddress ) { MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr; ASSERT ((BaseAddress & (SIZE_4KB - 1)) == 0); if (!LocalApicBaseAddressMsrSupported ()) { // // Ignore set request of the CPU does not support APIC Base Address MSR // return; } ApicBaseMsr.Uint64 = LocalApicReadMsrReg64 (MSR_IA32_APIC_BASE); ApicBaseMsr.Bits.ApicBase = (UINT32)(BaseAddress >> 12); ApicBaseMsr.Bits.ApicBaseHi = (UINT32)(RShiftU64 ((UINT64)BaseAddress, 32)); LocalApicWriteMsrReg64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64); } /** Read from a local APIC register. This function reads from a local APIC register either in xAPIC or x2APIC mode. It is required that in xAPIC mode wider registers (64-bit or 256-bit) must be accessed using multiple 32-bit loads or stores, so this function only performs 32-bit read. @param MmioOffset The MMIO offset of the local APIC register in xAPIC mode. It must be 16-byte aligned. @return 32-bit Value read from the register. **/ UINT32 EFIAPI ReadLocalApicReg ( IN UINTN MmioOffset ) { UINT32 MsrIndex; ASSERT ((MmioOffset & 0xf) == 0); if (GetApicMode () == LOCAL_APIC_MODE_XAPIC) { return MmioRead32 (GetLocalApicBaseAddress () + MmioOffset); } else { // // DFR is not supported in x2APIC mode. // ASSERT (MmioOffset != XAPIC_ICR_DFR_OFFSET); // // Note that in x2APIC mode, ICR is a 64-bit MSR that needs special treatment. It // is not supported in this function for simplicity. // ASSERT (MmioOffset != XAPIC_ICR_HIGH_OFFSET); MsrIndex = (UINT32)(MmioOffset >> 4) + X2APIC_MSR_BASE_ADDRESS; return LocalApicReadMsrReg32 (MsrIndex); } } /** Write to a local APIC register. This function writes to a local APIC register either in xAPIC or x2APIC mode. It is required that in xAPIC mode wider registers (64-bit or 256-bit) must be accessed using multiple 32-bit loads or stores, so this function only performs 32-bit write. if the register index is invalid or unsupported in current APIC mode, then ASSERT. @param MmioOffset The MMIO offset of the local APIC register in xAPIC mode. It must be 16-byte aligned. @param Value Value to be written to the register. **/ VOID EFIAPI WriteLocalApicReg ( IN UINTN MmioOffset, IN UINT32 Value ) { UINT32 MsrIndex; ASSERT ((MmioOffset & 0xf) == 0); if (GetApicMode () == LOCAL_APIC_MODE_XAPIC) { MmioWrite32 (GetLocalApicBaseAddress () + MmioOffset, Value); } else { // // DFR is not supported in x2APIC mode. // ASSERT (MmioOffset != XAPIC_ICR_DFR_OFFSET); // // Note that in x2APIC mode, ICR is a 64-bit MSR that needs special treatment. It // is not supported in this function for simplicity. // ASSERT (MmioOffset != XAPIC_ICR_HIGH_OFFSET); ASSERT (MmioOffset != XAPIC_ICR_LOW_OFFSET); MsrIndex = (UINT32)(MmioOffset >> 4) + X2APIC_MSR_BASE_ADDRESS; // // The serializing semantics of WRMSR are relaxed when writing to the APIC registers. // Use memory fence here to force the serializing semantics to be consisent with xAPIC mode. // MemoryFence (); LocalApicWriteMsrReg32 (MsrIndex, Value); } } /** Send an IPI by writing to ICR. This function returns after the IPI has been accepted by the target processor. @param IcrLow 32-bit value to be written to the low half of ICR. @param ApicId APIC ID of the target processor if this IPI is targeted for a specific processor. **/ VOID SendIpi ( IN UINT32 IcrLow, IN UINT32 ApicId ) { UINT64 MsrValue; LOCAL_APIC_ICR_LOW IcrLowReg; UINTN LocalApciBaseAddress; UINT32 IcrHigh; BOOLEAN InterruptState; // // Legacy APIC or X2APIC? // if (GetApicMode () == LOCAL_APIC_MODE_XAPIC) { ASSERT (ApicId <= 0xff); InterruptState = SaveAndDisableInterrupts (); // // Get base address of this LAPIC // LocalApciBaseAddress = GetLocalApicBaseAddress (); // // Save existing contents of ICR high 32 bits // IcrHigh = MmioRead32 (LocalApciBaseAddress + XAPIC_ICR_HIGH_OFFSET); // // Wait for DeliveryStatus clear in case a previous IPI // is still being sent // do { IcrLowReg.Uint32 = MmioRead32 (LocalApciBaseAddress + XAPIC_ICR_LOW_OFFSET); } while (IcrLowReg.Bits.DeliveryStatus != 0); // // For xAPIC, the act of writing to the low doubleword of the ICR causes the IPI to be sent. // MmioWrite32 (LocalApciBaseAddress + XAPIC_ICR_HIGH_OFFSET, ApicId << 24); MmioWrite32 (LocalApciBaseAddress + XAPIC_ICR_LOW_OFFSET, IcrLow); // // Wait for DeliveryStatus clear again // do { IcrLowReg.Uint32 = MmioRead32 (LocalApciBaseAddress + XAPIC_ICR_LOW_OFFSET); } while (IcrLowReg.Bits.DeliveryStatus != 0); // // And restore old contents of ICR high // MmioWrite32 (LocalApciBaseAddress + XAPIC_ICR_HIGH_OFFSET, IcrHigh); SetInterruptState (InterruptState); } else { // // For x2APIC, A single MSR write to the Interrupt Command Register is required for dispatching an // interrupt in x2APIC mode. // MsrValue = LShiftU64 ((UINT64)ApicId, 32) | IcrLow; AsmWriteMsr64 (X2APIC_MSR_ICR_ADDRESS, MsrValue); } } // // Library API implementation functions // /** Get the current local APIC mode. If local APIC is disabled, then ASSERT. @retval LOCAL_APIC_MODE_XAPIC current APIC mode is xAPIC. @retval LOCAL_APIC_MODE_X2APIC current APIC mode is x2APIC. **/ UINTN EFIAPI GetApicMode ( VOID ) { MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr; if (!LocalApicBaseAddressMsrSupported ()) { // // If CPU does not support APIC Base Address MSR, then return XAPIC mode // return LOCAL_APIC_MODE_XAPIC; } ApicBaseMsr.Uint64 = LocalApicReadMsrReg64 (MSR_IA32_APIC_BASE); // // Local APIC should have been enabled // ASSERT (ApicBaseMsr.Bits.EN != 0); if (ApicBaseMsr.Bits.EXTD != 0) { return LOCAL_APIC_MODE_X2APIC; } else { return LOCAL_APIC_MODE_XAPIC; } } /** Set the current local APIC mode. If the specified local APIC mode is not valid, then ASSERT. If the specified local APIC mode can't be set as current, then ASSERT. @param ApicMode APIC mode to be set. @note This API must not be called from an interrupt handler or SMI handler. It may result in unpredictable behavior. **/ VOID EFIAPI SetApicMode ( IN UINTN ApicMode ) { UINTN CurrentMode; MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr; if (!LocalApicBaseAddressMsrSupported ()) { // // Ignore set request if the CPU does not support APIC Base Address MSR // return; } CurrentMode = GetApicMode (); if (CurrentMode == LOCAL_APIC_MODE_XAPIC) { switch (ApicMode) { case LOCAL_APIC_MODE_XAPIC: break; case LOCAL_APIC_MODE_X2APIC: ApicBaseMsr.Uint64 = LocalApicReadMsrReg64 (MSR_IA32_APIC_BASE); ApicBaseMsr.Bits.EXTD = 1; LocalApicWriteMsrReg64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64); break; default: ASSERT (FALSE); } } else { switch (ApicMode) { case LOCAL_APIC_MODE_XAPIC: // // Transition from x2APIC mode to xAPIC mode is a two-step process: // x2APIC -> Local APIC disabled -> xAPIC // ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE); ApicBaseMsr.Bits.EXTD = 0; ApicBaseMsr.Bits.EN = 0; AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64); ApicBaseMsr.Bits.EN = 1; AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64); break; case LOCAL_APIC_MODE_X2APIC: break; default: ASSERT (FALSE); } } } /** Get the initial local APIC ID of the executing processor assigned by hardware upon power on or reset. In xAPIC mode, the initial local APIC ID may be different from current APIC ID. In x2APIC mode, the local APIC ID can't be changed and there is no concept of initial APIC ID. In this case, the 32-bit local APIC ID is returned as initial APIC ID. @return 32-bit initial local APIC ID of the executing processor. **/ UINT32 EFIAPI GetInitialApicId ( VOID ) { UINT32 ApicId; UINT32 MaxCpuIdIndex; UINT32 RegEbx; if (GetApicMode () == LOCAL_APIC_MODE_XAPIC) { // // Get the max index of basic CPUID // AsmCpuid (CPUID_SIGNATURE, &MaxCpuIdIndex, NULL, NULL, NULL); // // If CPUID Leaf B is supported, // And CPUID.0BH:EBX[15:0] reports a non-zero value, // Then the initial 32-bit APIC ID = CPUID.0BH:EDX // Else the initial 8-bit APIC ID = CPUID.1:EBX[31:24] // if (MaxCpuIdIndex >= CPUID_EXTENDED_TOPOLOGY) { AsmCpuidEx (CPUID_EXTENDED_TOPOLOGY, 0, NULL, &RegEbx, NULL, &ApicId); if ((RegEbx & (BIT16 - 1)) != 0) { return ApicId; } } AsmCpuid (CPUID_VERSION_INFO, NULL, &RegEbx, NULL, NULL); return RegEbx >> 24; } else { return GetApicId (); } } /** Get the local APIC ID of the executing processor. @return 32-bit local APIC ID of the executing processor. **/ UINT32 EFIAPI GetApicId ( VOID ) { UINT32 ApicId; UINT32 InitApicId; ApicId = ReadLocalApicReg (XAPIC_ID_OFFSET); if (GetApicMode () == LOCAL_APIC_MODE_XAPIC) { ApicId = ((InitApicId = GetInitialApicId ()) < 0x100) ? (ApicId >> 24) : InitApicId; } return ApicId; } /** Get the value of the local APIC version register. @return the value of the local APIC version register. **/ UINT32 EFIAPI GetApicVersion ( VOID ) { return ReadLocalApicReg (XAPIC_VERSION_OFFSET); } /** Send a Fixed IPI to a specified target processor. This function returns after the IPI has been accepted by the target processor. @param ApicId The local APIC ID of the target processor. @param Vector The vector number of the interrupt being sent. **/ VOID EFIAPI SendFixedIpi ( IN UINT32 ApicId, IN UINT8 Vector ) { LOCAL_APIC_ICR_LOW IcrLow; IcrLow.Uint32 = 0; IcrLow.Bits.DeliveryMode = LOCAL_APIC_DELIVERY_MODE_FIXED; IcrLow.Bits.Level = 1; IcrLow.Bits.Vector = Vector; SendIpi (IcrLow.Uint32, ApicId); } /** Send a Fixed IPI to all processors excluding self. This function returns after the IPI has been accepted by the target processors. @param Vector The vector number of the interrupt being sent. **/ VOID EFIAPI SendFixedIpiAllExcludingSelf ( IN UINT8 Vector ) { LOCAL_APIC_ICR_LOW IcrLow; IcrLow.Uint32 = 0; IcrLow.Bits.DeliveryMode = LOCAL_APIC_DELIVERY_MODE_FIXED; IcrLow.Bits.Level = 1; IcrLow.Bits.DestinationShorthand = LOCAL_APIC_DESTINATION_SHORTHAND_ALL_EXCLUDING_SELF; IcrLow.Bits.Vector = Vector; SendIpi (IcrLow.Uint32, 0); } /** Send a SMI IPI to a specified target processor. This function returns after the IPI has been accepted by the target processor. @param ApicId Specify the local APIC ID of the target processor. **/ VOID EFIAPI SendSmiIpi ( IN UINT32 ApicId ) { LOCAL_APIC_ICR_LOW IcrLow; IcrLow.Uint32 = 0; IcrLow.Bits.DeliveryMode = LOCAL_APIC_DELIVERY_MODE_SMI; IcrLow.Bits.Level = 1; SendIpi (IcrLow.Uint32, ApicId); } /** Send a SMI IPI to all processors excluding self. This function returns after the IPI has been accepted by the target processors. **/ VOID EFIAPI SendSmiIpiAllExcludingSelf ( VOID ) { LOCAL_APIC_ICR_LOW IcrLow; IcrLow.Uint32 = 0; IcrLow.Bits.DeliveryMode = LOCAL_APIC_DELIVERY_MODE_SMI; IcrLow.Bits.Level = 1; IcrLow.Bits.DestinationShorthand = LOCAL_APIC_DESTINATION_SHORTHAND_ALL_EXCLUDING_SELF; SendIpi (IcrLow.Uint32, 0); } /** Send an INIT IPI to a specified target processor. This function returns after the IPI has been accepted by the target processor. @param ApicId Specify the local APIC ID of the target processor. **/ VOID EFIAPI SendInitIpi ( IN UINT32 ApicId ) { LOCAL_APIC_ICR_LOW IcrLow; IcrLow.Uint32 = 0; IcrLow.Bits.DeliveryMode = LOCAL_APIC_DELIVERY_MODE_INIT; IcrLow.Bits.Level = 1; SendIpi (IcrLow.Uint32, ApicId); } /** Send an INIT IPI to all processors excluding self. This function returns after the IPI has been accepted by the target processors. **/ VOID EFIAPI SendInitIpiAllExcludingSelf ( VOID ) { LOCAL_APIC_ICR_LOW IcrLow; IcrLow.Uint32 = 0; IcrLow.Bits.DeliveryMode = LOCAL_APIC_DELIVERY_MODE_INIT; IcrLow.Bits.Level = 1; IcrLow.Bits.DestinationShorthand = LOCAL_APIC_DESTINATION_SHORTHAND_ALL_EXCLUDING_SELF; SendIpi (IcrLow.Uint32, 0); } /** Send a Start-up IPI to all processors excluding self. This function returns after the IPI has been accepted by the target processors. if StartupRoutine >= 1M, then ASSERT. if StartupRoutine is not multiple of 4K, then ASSERT. @param StartupRoutine Points to a start-up routine which is below 1M physical address and 4K aligned. **/ VOID EFIAPI SendStartupIpiAllExcludingSelf ( IN UINT32 StartupRoutine ) { LOCAL_APIC_ICR_LOW IcrLow; ASSERT (StartupRoutine < 0x100000); ASSERT ((StartupRoutine & 0xfff) == 0); IcrLow.Uint32 = 0; IcrLow.Bits.Vector = (StartupRoutine >> 12); IcrLow.Bits.DeliveryMode = LOCAL_APIC_DELIVERY_MODE_STARTUP; IcrLow.Bits.Level = 1; IcrLow.Bits.DestinationShorthand = LOCAL_APIC_DESTINATION_SHORTHAND_ALL_EXCLUDING_SELF; SendIpi (IcrLow.Uint32, 0); } /** Send an INIT-Start-up-Start-up IPI sequence to a specified target processor. This function returns after the IPI has been accepted by the target processor. if StartupRoutine >= 1M, then ASSERT. if StartupRoutine is not multiple of 4K, then ASSERT. @param ApicId Specify the local APIC ID of the target processor. @param StartupRoutine Points to a start-up routine which is below 1M physical address and 4K aligned. **/ VOID EFIAPI SendInitSipiSipi ( IN UINT32 ApicId, IN UINT32 StartupRoutine ) { LOCAL_APIC_ICR_LOW IcrLow; ASSERT (StartupRoutine < 0x100000); ASSERT ((StartupRoutine & 0xfff) == 0); SendInitIpi (ApicId); MicroSecondDelay (PcdGet32 (PcdCpuInitIpiDelayInMicroSeconds)); IcrLow.Uint32 = 0; IcrLow.Bits.Vector = (StartupRoutine >> 12); IcrLow.Bits.DeliveryMode = LOCAL_APIC_DELIVERY_MODE_STARTUP; IcrLow.Bits.Level = 1; SendIpi (IcrLow.Uint32, ApicId); if (!StandardSignatureIsAuthenticAMD ()) { MicroSecondDelay (200); SendIpi (IcrLow.Uint32, ApicId); } } /** Send an INIT-Start-up-Start-up IPI sequence to all processors excluding self. This function returns after the IPI has been accepted by the target processors. if StartupRoutine >= 1M, then ASSERT. if StartupRoutine is not multiple of 4K, then ASSERT. @param StartupRoutine Points to a start-up routine which is below 1M physical address and 4K aligned. **/ VOID EFIAPI SendInitSipiSipiAllExcludingSelf ( IN UINT32 StartupRoutine ) { SendInitIpiAllExcludingSelf (); MicroSecondDelay (PcdGet32 (PcdCpuInitIpiDelayInMicroSeconds)); SendStartupIpiAllExcludingSelf (StartupRoutine); if (!StandardSignatureIsAuthenticAMD ()) { MicroSecondDelay (200); SendStartupIpiAllExcludingSelf (StartupRoutine); } } /** Initialize the state of the SoftwareEnable bit in the Local APIC Spurious Interrupt Vector register. @param Enable If TRUE, then set SoftwareEnable to 1 If FALSE, then set SoftwareEnable to 0. **/ VOID EFIAPI InitializeLocalApicSoftwareEnable ( IN BOOLEAN Enable ) { LOCAL_APIC_SVR Svr; // // Set local APIC software-enabled bit. // Svr.Uint32 = ReadLocalApicReg (XAPIC_SPURIOUS_VECTOR_OFFSET); if (Enable) { if (Svr.Bits.SoftwareEnable == 0) { Svr.Bits.SoftwareEnable = 1; WriteLocalApicReg (XAPIC_SPURIOUS_VECTOR_OFFSET, Svr.Uint32); } } else { if (Svr.Bits.SoftwareEnable == 1) { Svr.Bits.SoftwareEnable = 0; WriteLocalApicReg (XAPIC_SPURIOUS_VECTOR_OFFSET, Svr.Uint32); } } } /** Programming Virtual Wire Mode. This function programs the local APIC for virtual wire mode following the example described in chapter A.3 of the MP 1.4 spec. IOxAPIC is not involved in this type of virtual wire mode. **/ VOID EFIAPI ProgramVirtualWireMode ( VOID ) { LOCAL_APIC_SVR Svr; LOCAL_APIC_LVT_LINT Lint; // // Enable the APIC via SVR and set the spurious interrupt to use Int 00F. // Svr.Uint32 = ReadLocalApicReg (XAPIC_SPURIOUS_VECTOR_OFFSET); Svr.Bits.SpuriousVector = 0xf; Svr.Bits.SoftwareEnable = 1; WriteLocalApicReg (XAPIC_SPURIOUS_VECTOR_OFFSET, Svr.Uint32); // // Program the LINT0 vector entry as ExtInt. Not masked, edge, active high. // Lint.Uint32 = ReadLocalApicReg (XAPIC_LVT_LINT0_OFFSET); Lint.Bits.DeliveryMode = LOCAL_APIC_DELIVERY_MODE_EXTINT; Lint.Bits.InputPinPolarity = 0; Lint.Bits.TriggerMode = 0; Lint.Bits.Mask = 0; WriteLocalApicReg (XAPIC_LVT_LINT0_OFFSET, Lint.Uint32); // // Program the LINT0 vector entry as NMI. Not masked, edge, active high. // Lint.Uint32 = ReadLocalApicReg (XAPIC_LVT_LINT1_OFFSET); Lint.Bits.DeliveryMode = LOCAL_APIC_DELIVERY_MODE_NMI; Lint.Bits.InputPinPolarity = 0; Lint.Bits.TriggerMode = 0; Lint.Bits.Mask = 0; WriteLocalApicReg (XAPIC_LVT_LINT1_OFFSET, Lint.Uint32); } /** Disable LINT0 & LINT1 interrupts. This function sets the mask flag in the LVT LINT0 & LINT1 registers. **/ VOID EFIAPI DisableLvtInterrupts ( VOID ) { LOCAL_APIC_LVT_LINT LvtLint; LvtLint.Uint32 = ReadLocalApicReg (XAPIC_LVT_LINT0_OFFSET); LvtLint.Bits.Mask = 1; WriteLocalApicReg (XAPIC_LVT_LINT0_OFFSET, LvtLint.Uint32); LvtLint.Uint32 = ReadLocalApicReg (XAPIC_LVT_LINT1_OFFSET); LvtLint.Bits.Mask = 1; WriteLocalApicReg (XAPIC_LVT_LINT1_OFFSET, LvtLint.Uint32); } /** Read the initial count value from the init-count register. @return The initial count value read from the init-count register. **/ UINT32 EFIAPI GetApicTimerInitCount ( VOID ) { return ReadLocalApicReg (XAPIC_TIMER_INIT_COUNT_OFFSET); } /** Read the current count value from the current-count register. @return The current count value read from the current-count register. **/ UINT32 EFIAPI GetApicTimerCurrentCount ( VOID ) { return ReadLocalApicReg (XAPIC_TIMER_CURRENT_COUNT_OFFSET); } /** Initialize the local APIC timer. The local APIC timer is initialized and enabled. @param DivideValue The divide value for the DCR. It is one of 1,2,4,8,16,32,64,128. If it is 0, then use the current divide value in the DCR. @param InitCount The initial count value. @param PeriodicMode If TRUE, timer mode is peridoic. Othewise, timer mode is one-shot. @param Vector The timer interrupt vector number. **/ VOID EFIAPI InitializeApicTimer ( IN UINTN DivideValue, IN UINT32 InitCount, IN BOOLEAN PeriodicMode, IN UINT8 Vector ) { LOCAL_APIC_DCR Dcr; LOCAL_APIC_LVT_TIMER LvtTimer; UINT32 Divisor; // // Ensure local APIC is in software-enabled state. // InitializeLocalApicSoftwareEnable (TRUE); if (DivideValue != 0) { ASSERT (DivideValue <= 128); ASSERT (DivideValue == GetPowerOfTwo32 ((UINT32)DivideValue)); Divisor = (UINT32)((HighBitSet32 ((UINT32)DivideValue) - 1) & 0x7); Dcr.Uint32 = ReadLocalApicReg (XAPIC_TIMER_DIVIDE_CONFIGURATION_OFFSET); Dcr.Bits.DivideValue1 = (Divisor & 0x3); Dcr.Bits.DivideValue2 = (Divisor >> 2); WriteLocalApicReg (XAPIC_TIMER_DIVIDE_CONFIGURATION_OFFSET, Dcr.Uint32); } // // Enable APIC timer interrupt with specified timer mode. // LvtTimer.Uint32 = ReadLocalApicReg (XAPIC_LVT_TIMER_OFFSET); if (PeriodicMode) { LvtTimer.Bits.TimerMode = 1; } else { LvtTimer.Bits.TimerMode = 0; } LvtTimer.Bits.Mask = 0; LvtTimer.Bits.Vector = Vector; WriteLocalApicReg (XAPIC_LVT_TIMER_OFFSET, LvtTimer.Uint32); // // Program init-count register. // WriteLocalApicReg (XAPIC_TIMER_INIT_COUNT_OFFSET, InitCount); } /** Get the state of the local APIC timer. This function will ASSERT if the local APIC is not software enabled. @param DivideValue Return the divide value for the DCR. It is one of 1,2,4,8,16,32,64,128. @param PeriodicMode Return the timer mode. If TRUE, timer mode is peridoic. Othewise, timer mode is one-shot. @param Vector Return the timer interrupt vector number. **/ VOID EFIAPI GetApicTimerState ( OUT UINTN *DivideValue OPTIONAL, OUT BOOLEAN *PeriodicMode OPTIONAL, OUT UINT8 *Vector OPTIONAL ) { UINT32 Divisor; LOCAL_APIC_DCR Dcr; LOCAL_APIC_LVT_TIMER LvtTimer; // // Check the APIC Software Enable/Disable bit (bit 8) in Spurious-Interrupt // Vector Register. // This bit will be 1, if local APIC is software enabled. // ASSERT ((ReadLocalApicReg (XAPIC_SPURIOUS_VECTOR_OFFSET) & BIT8) != 0); if (DivideValue != NULL) { Dcr.Uint32 = ReadLocalApicReg (XAPIC_TIMER_DIVIDE_CONFIGURATION_OFFSET); Divisor = Dcr.Bits.DivideValue1 | (Dcr.Bits.DivideValue2 << 2); Divisor = (Divisor + 1) & 0x7; *DivideValue = ((UINTN)1) << Divisor; } if ((PeriodicMode != NULL) || (Vector != NULL)) { LvtTimer.Uint32 = ReadLocalApicReg (XAPIC_LVT_TIMER_OFFSET); if (PeriodicMode != NULL) { if (LvtTimer.Bits.TimerMode == 1) { *PeriodicMode = TRUE; } else { *PeriodicMode = FALSE; } } if (Vector != NULL) { *Vector = (UINT8)LvtTimer.Bits.Vector; } } } /** Enable the local APIC timer interrupt. **/ VOID EFIAPI EnableApicTimerInterrupt ( VOID ) { LOCAL_APIC_LVT_TIMER LvtTimer; LvtTimer.Uint32 = ReadLocalApicReg (XAPIC_LVT_TIMER_OFFSET); LvtTimer.Bits.Mask = 0; WriteLocalApicReg (XAPIC_LVT_TIMER_OFFSET, LvtTimer.Uint32); } /** Disable the local APIC timer interrupt. **/ VOID EFIAPI DisableApicTimerInterrupt ( VOID ) { LOCAL_APIC_LVT_TIMER LvtTimer; LvtTimer.Uint32 = ReadLocalApicReg (XAPIC_LVT_TIMER_OFFSET); LvtTimer.Bits.Mask = 1; WriteLocalApicReg (XAPIC_LVT_TIMER_OFFSET, LvtTimer.Uint32); } /** Get the local APIC timer interrupt state. @retval TRUE The local APIC timer interrupt is enabled. @retval FALSE The local APIC timer interrupt is disabled. **/ BOOLEAN EFIAPI GetApicTimerInterruptState ( VOID ) { LOCAL_APIC_LVT_TIMER LvtTimer; LvtTimer.Uint32 = ReadLocalApicReg (XAPIC_LVT_TIMER_OFFSET); return (BOOLEAN)(LvtTimer.Bits.Mask == 0); } /** Send EOI to the local APIC. **/ VOID EFIAPI SendApicEoi ( VOID ) { WriteLocalApicReg (XAPIC_EOI_OFFSET, 0); } /** Get the 32-bit address that a device should use to send a Message Signaled Interrupt (MSI) to the Local APIC of the currently executing processor. @return 32-bit address used to send an MSI to the Local APIC. **/ UINT32 EFIAPI GetApicMsiAddress ( VOID ) { LOCAL_APIC_MSI_ADDRESS MsiAddress; // // Return address for an MSI interrupt to be delivered only to the APIC ID // of the currently executing processor. // MsiAddress.Uint32 = 0; MsiAddress.Bits.BaseAddress = 0xFEE; MsiAddress.Bits.DestinationId = GetApicId (); return MsiAddress.Uint32; } /** Get the 64-bit data value that a device should use to send a Message Signaled Interrupt (MSI) to the Local APIC of the currently executing processor. If Vector is not in range 0x10..0xFE, then ASSERT(). If DeliveryMode is not supported, then ASSERT(). @param Vector The 8-bit interrupt vector associated with the MSI. Must be in the range 0x10..0xFE @param DeliveryMode A 3-bit value that specifies how the recept of the MSI is handled. The only supported values are: 0: LOCAL_APIC_DELIVERY_MODE_FIXED 1: LOCAL_APIC_DELIVERY_MODE_LOWEST_PRIORITY 2: LOCAL_APIC_DELIVERY_MODE_SMI 4: LOCAL_APIC_DELIVERY_MODE_NMI 5: LOCAL_APIC_DELIVERY_MODE_INIT 7: LOCAL_APIC_DELIVERY_MODE_EXTINT @param LevelTriggered TRUE specifies a level triggered interrupt. FALSE specifies an edge triggered interrupt. @param AssertionLevel Ignored if LevelTriggered is FALSE. TRUE specifies a level triggered interrupt that active when the interrupt line is asserted. FALSE specifies a level triggered interrupt that active when the interrupt line is deasserted. @return 64-bit data value used to send an MSI to the Local APIC. **/ UINT64 EFIAPI GetApicMsiValue ( IN UINT8 Vector, IN UINTN DeliveryMode, IN BOOLEAN LevelTriggered, IN BOOLEAN AssertionLevel ) { LOCAL_APIC_MSI_DATA MsiData; ASSERT (Vector >= 0x10 && Vector <= 0xFE); ASSERT (DeliveryMode < 8 && DeliveryMode != 6 && DeliveryMode != 3); MsiData.Uint64 = 0; MsiData.Bits.Vector = Vector; MsiData.Bits.DeliveryMode = (UINT32)DeliveryMode; if (LevelTriggered) { MsiData.Bits.TriggerMode = 1; if (AssertionLevel) { MsiData.Bits.Level = 1; } } return MsiData.Uint64; } /** Get Package ID/Core ID/Thread ID of a processor. The algorithm assumes the target system has symmetry across physical package boundaries with respect to the number of logical processors per package, number of cores per package. @param[in] InitialApicId Initial APIC ID of the target logical processor. @param[out] Package Returns the processor package ID. @param[out] Core Returns the processor core ID. @param[out] Thread Returns the processor thread ID. **/ VOID EFIAPI GetProcessorLocationByApicId ( IN UINT32 InitialApicId, OUT UINT32 *Package OPTIONAL, OUT UINT32 *Core OPTIONAL, OUT UINT32 *Thread OPTIONAL ) { BOOLEAN TopologyLeafSupported; CPUID_VERSION_INFO_EBX VersionInfoEbx; CPUID_VERSION_INFO_EDX VersionInfoEdx; CPUID_CACHE_PARAMS_EAX CacheParamsEax; CPUID_EXTENDED_TOPOLOGY_EAX ExtendedTopologyEax; CPUID_EXTENDED_TOPOLOGY_EBX ExtendedTopologyEbx; CPUID_EXTENDED_TOPOLOGY_ECX ExtendedTopologyEcx; CPUID_AMD_EXTENDED_CPU_SIG_ECX AmdExtendedCpuSigEcx; CPUID_AMD_PROCESSOR_TOPOLOGY_EBX AmdProcessorTopologyEbx; CPUID_AMD_VIR_PHY_ADDRESS_SIZE_ECX AmdVirPhyAddressSizeEcx; UINT32 MaxStandardCpuIdIndex; UINT32 MaxExtendedCpuIdIndex; UINT32 SubIndex; UINTN LevelType; UINT32 MaxLogicProcessorsPerPackage; UINT32 MaxCoresPerPackage; UINTN ThreadBits; UINTN CoreBits; // // Check if the processor is capable of supporting more than one logical processor. // AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32); if (VersionInfoEdx.Bits.HTT == 0) { if (Thread != NULL) { *Thread = 0; } if (Core != NULL) { *Core = 0; } if (Package != NULL) { *Package = 0; } return; } // // Assume three-level mapping of APIC ID: Package|Core|Thread. // ThreadBits = 0; CoreBits = 0; // // Get max index of CPUID // AsmCpuid (CPUID_SIGNATURE, &MaxStandardCpuIdIndex, NULL, NULL, NULL); AsmCpuid (CPUID_EXTENDED_FUNCTION, &MaxExtendedCpuIdIndex, NULL, NULL, NULL); // // If the extended topology enumeration leaf is available, it // is the preferred mechanism for enumerating topology. // TopologyLeafSupported = FALSE; if (MaxStandardCpuIdIndex >= CPUID_EXTENDED_TOPOLOGY) { AsmCpuidEx ( CPUID_EXTENDED_TOPOLOGY, 0, &ExtendedTopologyEax.Uint32, &ExtendedTopologyEbx.Uint32, &ExtendedTopologyEcx.Uint32, NULL ); // // Quoting Intel SDM: // Software must detect the presence of CPUID leaf 0BH by // verifying (a) the highest leaf index supported by CPUID is >= // 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. // if (ExtendedTopologyEbx.Bits.LogicalProcessors != 0) { TopologyLeafSupported = TRUE; // // Sub-leaf index 0 (ECX= 0 as input) provides enumeration parameters to extract // the SMT sub-field of x2APIC ID. // LevelType = ExtendedTopologyEcx.Bits.LevelType; ASSERT (LevelType == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_SMT); ThreadBits = ExtendedTopologyEax.Bits.ApicIdShift; // // Software must not assume any "level type" encoding // value to be related to any sub-leaf index, except sub-leaf 0. // SubIndex = 1; do { AsmCpuidEx ( CPUID_EXTENDED_TOPOLOGY, SubIndex, &ExtendedTopologyEax.Uint32, NULL, &ExtendedTopologyEcx.Uint32, NULL ); LevelType = ExtendedTopologyEcx.Bits.LevelType; if (LevelType == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_CORE) { CoreBits = ExtendedTopologyEax.Bits.ApicIdShift - ThreadBits; break; } SubIndex++; } while (LevelType != CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_INVALID); } } if (!TopologyLeafSupported) { // // Get logical processor count // AsmCpuid (CPUID_VERSION_INFO, NULL, &VersionInfoEbx.Uint32, NULL, NULL); MaxLogicProcessorsPerPackage = VersionInfoEbx.Bits.MaximumAddressableIdsForLogicalProcessors; // // Assume single-core processor // MaxCoresPerPackage = 1; // // Check for topology extensions on AMD processor // if (StandardSignatureIsAuthenticAMD ()) { if (MaxExtendedCpuIdIndex >= CPUID_AMD_PROCESSOR_TOPOLOGY) { AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, &AmdExtendedCpuSigEcx.Uint32, NULL); if (AmdExtendedCpuSigEcx.Bits.TopologyExtensions != 0) { // // Account for max possible thread count to decode ApicId // AsmCpuid (CPUID_VIR_PHY_ADDRESS_SIZE, NULL, NULL, &AmdVirPhyAddressSizeEcx.Uint32, NULL); MaxLogicProcessorsPerPackage = 1 << AmdVirPhyAddressSizeEcx.Bits.ApicIdCoreIdSize; // // Get cores per processor package // AsmCpuid (CPUID_AMD_PROCESSOR_TOPOLOGY, NULL, &AmdProcessorTopologyEbx.Uint32, NULL, NULL); MaxCoresPerPackage = MaxLogicProcessorsPerPackage / (AmdProcessorTopologyEbx.Bits.ThreadsPerCore + 1); } } } else { // // Extract core count based on CACHE information // if (MaxStandardCpuIdIndex >= CPUID_CACHE_PARAMS) { AsmCpuidEx (CPUID_CACHE_PARAMS, 0, &CacheParamsEax.Uint32, NULL, NULL, NULL); if (CacheParamsEax.Uint32 != 0) { MaxCoresPerPackage = CacheParamsEax.Bits.MaximumAddressableIdsForLogicalProcessors + 1; } } } ThreadBits = (UINTN)(HighBitSet32 (MaxLogicProcessorsPerPackage / MaxCoresPerPackage - 1) + 1); CoreBits = (UINTN)(HighBitSet32 (MaxCoresPerPackage - 1) + 1); } if (Thread != NULL) { *Thread = InitialApicId & ((1 << ThreadBits) - 1); } if (Core != NULL) { *Core = (InitialApicId >> ThreadBits) & ((1 << CoreBits) - 1); } if (Package != NULL) { *Package = (InitialApicId >> (ThreadBits + CoreBits)); } } /** Get Package ID/Die ID/Module ID/Core ID/Thread ID of a AMD processor family. The algorithm assumes the target system has symmetry across physical package boundaries with respect to the number of threads per core, number of cores per module, number of modules per die, number of dies per package. @param[in] InitialApicId Initial APIC ID of the target logical processor. @param[out] Package Returns the processor package ID. @param[out] Die Returns the processor die ID. @param[out] Tile Returns zero. @param[out] Module Returns the processor module ID. @param[out] Core Returns the processor core ID. @param[out] Thread Returns the processor thread ID. **/ VOID AmdGetProcessorLocation2ByApicId ( IN UINT32 InitialApicId, OUT UINT32 *Package OPTIONAL, OUT UINT32 *Die OPTIONAL, OUT UINT32 *Tile OPTIONAL, OUT UINT32 *Module OPTIONAL, OUT UINT32 *Core OPTIONAL, OUT UINT32 *Thread OPTIONAL ) { CPUID_EXTENDED_TOPOLOGY_EAX ExtendedTopologyEax; CPUID_EXTENDED_TOPOLOGY_EBX ExtendedTopologyEbx; CPUID_EXTENDED_TOPOLOGY_ECX ExtendedTopologyEcx; UINT32 MaxExtendedCpuIdIndex; UINT32 TopologyLevel; UINT32 PreviousLevel; UINT32 Data; if (Die != NULL) { *Die = 0; } if (Tile != NULL) { *Tile = 0; } if (Module != NULL) { *Module = 0; } PreviousLevel = 0; TopologyLevel = 0; /// Check if extended toplogy supported AsmCpuid (CPUID_EXTENDED_FUNCTION, &MaxExtendedCpuIdIndex, NULL, NULL, NULL); if (MaxExtendedCpuIdIndex >= AMD_CPUID_EXTENDED_TOPOLOGY) { do { AsmCpuidEx ( AMD_CPUID_EXTENDED_TOPOLOGY, TopologyLevel, &ExtendedTopologyEax.Uint32, &ExtendedTopologyEbx.Uint32, &ExtendedTopologyEcx.Uint32, NULL ); if (ExtendedTopologyEbx.Bits.LogicalProcessors == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_INVALID) { /// if this fails at first level /// then will fall back to non-extended topology break; } Data = InitialApicId >> PreviousLevel; Data &= (1 << (ExtendedTopologyEax.Bits.ApicIdShift - PreviousLevel)) - 1; switch (ExtendedTopologyEcx.Bits.LevelType) { case CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_SMT: if (Thread != NULL) { *Thread = Data; } break; case CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_CORE: if (Core != NULL) { *Core = Data; } break; case CPUID_V2_EXTENDED_TOPOLOGY_LEVEL_TYPE_MODULE: if (Module != NULL) { *Module = Data; } break; case CPUID_V2_EXTENDED_TOPOLOGY_LEVEL_TYPE_TILE: if (Die != NULL) { *Die = Data; } break; default: break; } TopologyLevel++; PreviousLevel = ExtendedTopologyEax.Bits.ApicIdShift; } while (ExtendedTopologyEbx.Bits.LogicalProcessors != CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_INVALID); if (Package != NULL) { *Package = InitialApicId >> PreviousLevel; } } /// If extended topology CPUID is not supported /// OR, execution of AMD_CPUID_EXTENDED_TOPOLOGY at level 0 fails(return 0). if (TopologyLevel == 0) { GetProcessorLocationByApicId (InitialApicId, Package, Core, Thread); } return; } /** Get Package ID/Die ID/Tile ID/Module ID/Core ID/Thread ID of a processor. The algorithm assumes the target system has symmetry across physical package boundaries with respect to the number of threads per core, number of cores per module, number of modules per tile, number of tiles per die, number of dies per package. @param[in] InitialApicId Initial APIC ID of the target logical processor. @param[out] Package Returns the processor package ID. @param[out] Die Returns the processor die ID. @param[out] Tile Returns the processor tile ID. @param[out] Module Returns the processor module ID. @param[out] Core Returns the processor core ID. @param[out] Thread Returns the processor thread ID. **/ VOID EFIAPI GetProcessorLocation2ByApicId ( IN UINT32 InitialApicId, OUT UINT32 *Package OPTIONAL, OUT UINT32 *Die OPTIONAL, OUT UINT32 *Tile OPTIONAL, OUT UINT32 *Module OPTIONAL, OUT UINT32 *Core OPTIONAL, OUT UINT32 *Thread OPTIONAL ) { CPUID_EXTENDED_TOPOLOGY_EAX ExtendedTopologyEax; CPUID_EXTENDED_TOPOLOGY_EBX ExtendedTopologyEbx; CPUID_EXTENDED_TOPOLOGY_ECX ExtendedTopologyEcx; UINT32 MaxStandardCpuIdIndex; UINT32 Index; UINTN LevelType; UINT32 Bits[CPUID_V2_EXTENDED_TOPOLOGY_LEVEL_TYPE_DIE + 2]; UINT32 *Location[CPUID_V2_EXTENDED_TOPOLOGY_LEVEL_TYPE_DIE + 2]; if (StandardSignatureIsAuthenticAMD ()) { AmdGetProcessorLocation2ByApicId (InitialApicId, Package, Die, Tile, Module, Core, Thread); return; } for (LevelType = 0; LevelType < ARRAY_SIZE (Bits); LevelType++) { Bits[LevelType] = 0; } // // Quoting Intel SDM: // Software must detect the presence of CPUID leaf 1FH by verifying // (a) the highest leaf index supported by CPUID is >= 1FH, and (b) // CPUID.1FH:EBX[15:0] reports a non-zero value. // AsmCpuid (CPUID_SIGNATURE, &MaxStandardCpuIdIndex, NULL, NULL, NULL); if (MaxStandardCpuIdIndex < CPUID_V2_EXTENDED_TOPOLOGY) { ExtendedTopologyEbx.Bits.LogicalProcessors = 0; } else { AsmCpuidEx (CPUID_V2_EXTENDED_TOPOLOGY, 0, NULL, &ExtendedTopologyEbx.Uint32, NULL, NULL); } if (ExtendedTopologyEbx.Bits.LogicalProcessors == 0) { if (Die != NULL) { *Die = 0; } if (Tile != NULL) { *Tile = 0; } if (Module != NULL) { *Module = 0; } GetProcessorLocationByApicId (InitialApicId, Package, Core, Thread); return; } // // If the V2 extended topology enumeration leaf is available, it // is the preferred mechanism for enumerating topology. // for (Index = 0; ; Index++) { AsmCpuidEx ( CPUID_V2_EXTENDED_TOPOLOGY, Index, &ExtendedTopologyEax.Uint32, NULL, &ExtendedTopologyEcx.Uint32, NULL ); LevelType = ExtendedTopologyEcx.Bits.LevelType; // // first level reported should be SMT. // ASSERT ((Index != 0) || (LevelType == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_SMT)); if (LevelType == CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_INVALID) { break; } ASSERT (LevelType < ARRAY_SIZE (Bits)); Bits[LevelType] = ExtendedTopologyEax.Bits.ApicIdShift; } for (LevelType = CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_CORE; LevelType < ARRAY_SIZE (Bits); LevelType++) { // // If there are more levels between level-1 (low-level) and level-2 (high-level), the unknown levels will be ignored // and treated as an extension of the last known level (i.e., level-1 in this case). // if (Bits[LevelType] == 0) { Bits[LevelType] = Bits[LevelType - 1]; } } Location[CPUID_V2_EXTENDED_TOPOLOGY_LEVEL_TYPE_DIE + 1] = Package; Location[CPUID_V2_EXTENDED_TOPOLOGY_LEVEL_TYPE_DIE] = Die; Location[CPUID_V2_EXTENDED_TOPOLOGY_LEVEL_TYPE_TILE] = Tile; Location[CPUID_V2_EXTENDED_TOPOLOGY_LEVEL_TYPE_MODULE] = Module; Location[CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_CORE] = Core; Location[CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_SMT] = Thread; Bits[CPUID_V2_EXTENDED_TOPOLOGY_LEVEL_TYPE_DIE + 1] = 32; for ( LevelType = CPUID_EXTENDED_TOPOLOGY_LEVEL_TYPE_SMT ; LevelType <= CPUID_V2_EXTENDED_TOPOLOGY_LEVEL_TYPE_DIE + 1 ; LevelType++ ) { if (Location[LevelType] != NULL) { // // Bits[i] holds the number of bits to shift right on x2APIC ID to get a unique // topology ID of the next level type. // *Location[LevelType] = InitialApicId >> Bits[LevelType - 1]; // // Bits[i] - Bits[i-1] holds the number of bits for the next ONE level type. // *Location[LevelType] &= (1 << (Bits[LevelType] - Bits[LevelType - 1])) - 1; } } }