// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file tests some commonly used argument matchers. // Silence warning C4244: 'initializing': conversion from 'int' to 'short', // possible loss of data and C4100, unreferenced local parameter #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4244) #pragma warning(disable : 4100) #endif #include "test/gmock-matchers_test.h" namespace testing { namespace gmock_matchers_test { namespace { TEST(AddressTest, NonConst) { int n = 1; const Matcher m = Address(Eq(&n)); EXPECT_TRUE(m.Matches(n)); int other = 5; EXPECT_FALSE(m.Matches(other)); int& n_ref = n; EXPECT_TRUE(m.Matches(n_ref)); } TEST(AddressTest, Const) { const int n = 1; const Matcher m = Address(Eq(&n)); EXPECT_TRUE(m.Matches(n)); int other = 5; EXPECT_FALSE(m.Matches(other)); } TEST(AddressTest, MatcherDoesntCopy) { std::unique_ptr n(new int(1)); const Matcher> m = Address(Eq(&n)); EXPECT_TRUE(m.Matches(n)); } TEST(AddressTest, Describe) { Matcher matcher = Address(_); EXPECT_EQ("has address that is anything", Describe(matcher)); EXPECT_EQ("does not have address that is anything", DescribeNegation(matcher)); } // The following two tests verify that values without a public copy // ctor can be used as arguments to matchers like Eq(), Ge(), and etc // with the help of ByRef(). class NotCopyable { public: explicit NotCopyable(int a_value) : value_(a_value) {} int value() const { return value_; } bool operator==(const NotCopyable& rhs) const { return value() == rhs.value(); } bool operator>=(const NotCopyable& rhs) const { return value() >= rhs.value(); } private: int value_; NotCopyable(const NotCopyable&) = delete; NotCopyable& operator=(const NotCopyable&) = delete; }; TEST(ByRefTest, AllowsNotCopyableConstValueInMatchers) { const NotCopyable const_value1(1); const Matcher m = Eq(ByRef(const_value1)); const NotCopyable n1(1), n2(2); EXPECT_TRUE(m.Matches(n1)); EXPECT_FALSE(m.Matches(n2)); } TEST(ByRefTest, AllowsNotCopyableValueInMatchers) { NotCopyable value2(2); const Matcher m = Ge(ByRef(value2)); NotCopyable n1(1), n2(2); EXPECT_FALSE(m.Matches(n1)); EXPECT_TRUE(m.Matches(n2)); } TEST(IsEmptyTest, ImplementsIsEmpty) { vector container; EXPECT_THAT(container, IsEmpty()); container.push_back(0); EXPECT_THAT(container, Not(IsEmpty())); container.push_back(1); EXPECT_THAT(container, Not(IsEmpty())); } TEST(IsEmptyTest, WorksWithString) { std::string text; EXPECT_THAT(text, IsEmpty()); text = "foo"; EXPECT_THAT(text, Not(IsEmpty())); text = std::string("\0", 1); EXPECT_THAT(text, Not(IsEmpty())); } TEST(IsEmptyTest, CanDescribeSelf) { Matcher> m = IsEmpty(); EXPECT_EQ("is empty", Describe(m)); EXPECT_EQ("isn't empty", DescribeNegation(m)); } TEST(IsEmptyTest, ExplainsResult) { Matcher> m = IsEmpty(); vector container; EXPECT_EQ("", Explain(m, container)); container.push_back(0); EXPECT_EQ("whose size is 1", Explain(m, container)); } TEST(IsEmptyTest, WorksWithMoveOnly) { ContainerHelper helper; EXPECT_CALL(helper, Call(IsEmpty())); helper.Call({}); } TEST(IsTrueTest, IsTrueIsFalse) { EXPECT_THAT(true, IsTrue()); EXPECT_THAT(false, IsFalse()); EXPECT_THAT(true, Not(IsFalse())); EXPECT_THAT(false, Not(IsTrue())); EXPECT_THAT(0, Not(IsTrue())); EXPECT_THAT(0, IsFalse()); EXPECT_THAT(nullptr, Not(IsTrue())); EXPECT_THAT(nullptr, IsFalse()); EXPECT_THAT(-1, IsTrue()); EXPECT_THAT(-1, Not(IsFalse())); EXPECT_THAT(1, IsTrue()); EXPECT_THAT(1, Not(IsFalse())); EXPECT_THAT(2, IsTrue()); EXPECT_THAT(2, Not(IsFalse())); int a = 42; EXPECT_THAT(a, IsTrue()); EXPECT_THAT(a, Not(IsFalse())); EXPECT_THAT(&a, IsTrue()); EXPECT_THAT(&a, Not(IsFalse())); EXPECT_THAT(false, Not(IsTrue())); EXPECT_THAT(true, Not(IsFalse())); EXPECT_THAT(std::true_type(), IsTrue()); EXPECT_THAT(std::true_type(), Not(IsFalse())); EXPECT_THAT(std::false_type(), IsFalse()); EXPECT_THAT(std::false_type(), Not(IsTrue())); EXPECT_THAT(nullptr, Not(IsTrue())); EXPECT_THAT(nullptr, IsFalse()); std::unique_ptr null_unique; std::unique_ptr nonnull_unique(new int(0)); EXPECT_THAT(null_unique, Not(IsTrue())); EXPECT_THAT(null_unique, IsFalse()); EXPECT_THAT(nonnull_unique, IsTrue()); EXPECT_THAT(nonnull_unique, Not(IsFalse())); } #if GTEST_HAS_TYPED_TEST // Tests ContainerEq with different container types, and // different element types. template class ContainerEqTest : public testing::Test {}; typedef testing::Types, vector, multiset, list> ContainerEqTestTypes; TYPED_TEST_SUITE(ContainerEqTest, ContainerEqTestTypes); // Tests that the filled container is equal to itself. TYPED_TEST(ContainerEqTest, EqualsSelf) { static const int vals[] = {1, 1, 2, 3, 5, 8}; TypeParam my_set(vals, vals + 6); const Matcher m = ContainerEq(my_set); EXPECT_TRUE(m.Matches(my_set)); EXPECT_EQ("", Explain(m, my_set)); } // Tests that missing values are reported. TYPED_TEST(ContainerEqTest, ValueMissing) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {2, 1, 8, 5}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 4); const Matcher m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which doesn't have these expected elements: 3", Explain(m, test_set)); } // Tests that added values are reported. TYPED_TEST(ContainerEqTest, ValueAdded) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8, 46}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 6); const Matcher m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 46", Explain(m, test_set)); } // Tests that added and missing values are reported together. TYPED_TEST(ContainerEqTest, ValueAddedAndRemoved) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 8, 46}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 5); const Matcher m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ( "which has these unexpected elements: 46,\n" "and doesn't have these expected elements: 5", Explain(m, test_set)); } // Tests duplicated value -- expect no explanation. TYPED_TEST(ContainerEqTest, DuplicateDifference) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8}; TypeParam my_set(vals, vals + 6); TypeParam test_set(test_vals, test_vals + 5); const Matcher m = ContainerEq(my_set); // Depending on the container, match may be true or false // But in any case there should be no explanation. EXPECT_EQ("", Explain(m, test_set)); } #endif // GTEST_HAS_TYPED_TEST // Tests that multiple missing values are reported. // Using just vector here, so order is predictable. TEST(ContainerEqExtraTest, MultipleValuesMissing) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {2, 1, 5}; vector my_set(vals, vals + 6); vector test_set(test_vals, test_vals + 3); const Matcher> m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which doesn't have these expected elements: 3, 8", Explain(m, test_set)); } // Tests that added values are reported. // Using just vector here, so order is predictable. TEST(ContainerEqExtraTest, MultipleValuesAdded) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 92, 3, 5, 8, 46}; list my_set(vals, vals + 6); list test_set(test_vals, test_vals + 7); const Matcher&> m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ("which has these unexpected elements: 92, 46", Explain(m, test_set)); } // Tests that added and missing values are reported together. TEST(ContainerEqExtraTest, MultipleValuesAddedAndRemoved) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 92, 46}; list my_set(vals, vals + 6); list test_set(test_vals, test_vals + 5); const Matcher> m = ContainerEq(my_set); EXPECT_FALSE(m.Matches(test_set)); EXPECT_EQ( "which has these unexpected elements: 92, 46,\n" "and doesn't have these expected elements: 5, 8", Explain(m, test_set)); } // Tests to see that duplicate elements are detected, // but (as above) not reported in the explanation. TEST(ContainerEqExtraTest, MultiSetOfIntDuplicateDifference) { static const int vals[] = {1, 1, 2, 3, 5, 8}; static const int test_vals[] = {1, 2, 3, 5, 8}; vector my_set(vals, vals + 6); vector test_set(test_vals, test_vals + 5); const Matcher> m = ContainerEq(my_set); EXPECT_TRUE(m.Matches(my_set)); EXPECT_FALSE(m.Matches(test_set)); // There is nothing to report when both sets contain all the same values. EXPECT_EQ("", Explain(m, test_set)); } // Tests that ContainerEq works for non-trivial associative containers, // like maps. TEST(ContainerEqExtraTest, WorksForMaps) { map my_map; my_map[0] = "a"; my_map[1] = "b"; map test_map; test_map[0] = "aa"; test_map[1] = "b"; const Matcher&> m = ContainerEq(my_map); EXPECT_TRUE(m.Matches(my_map)); EXPECT_FALSE(m.Matches(test_map)); EXPECT_EQ( "which has these unexpected elements: (0, \"aa\"),\n" "and doesn't have these expected elements: (0, \"a\")", Explain(m, test_map)); } TEST(ContainerEqExtraTest, WorksForNativeArray) { int a1[] = {1, 2, 3}; int a2[] = {1, 2, 3}; int b[] = {1, 2, 4}; EXPECT_THAT(a1, ContainerEq(a2)); EXPECT_THAT(a1, Not(ContainerEq(b))); } TEST(ContainerEqExtraTest, WorksForTwoDimensionalNativeArray) { const char a1[][3] = {"hi", "lo"}; const char a2[][3] = {"hi", "lo"}; const char b[][3] = {"lo", "hi"}; // Tests using ContainerEq() in the first dimension. EXPECT_THAT(a1, ContainerEq(a2)); EXPECT_THAT(a1, Not(ContainerEq(b))); // Tests using ContainerEq() in the second dimension. EXPECT_THAT(a1, ElementsAre(ContainerEq(a2[0]), ContainerEq(a2[1]))); EXPECT_THAT(a1, ElementsAre(Not(ContainerEq(b[0])), ContainerEq(a2[1]))); } TEST(ContainerEqExtraTest, WorksForNativeArrayAsTuple) { const int a1[] = {1, 2, 3}; const int a2[] = {1, 2, 3}; const int b[] = {1, 2, 3, 4}; const int* const p1 = a1; EXPECT_THAT(std::make_tuple(p1, 3), ContainerEq(a2)); EXPECT_THAT(std::make_tuple(p1, 3), Not(ContainerEq(b))); const int c[] = {1, 3, 2}; EXPECT_THAT(std::make_tuple(p1, 3), Not(ContainerEq(c))); } TEST(ContainerEqExtraTest, CopiesNativeArrayParameter) { std::string a1[][3] = {{"hi", "hello", "ciao"}, {"bye", "see you", "ciao"}}; std::string a2[][3] = {{"hi", "hello", "ciao"}, {"bye", "see you", "ciao"}}; const Matcher m = ContainerEq(a2); EXPECT_THAT(a1, m); a2[0][0] = "ha"; EXPECT_THAT(a1, m); } namespace { // Used as a check on the more complex max flow method used in the // real testing::internal::FindMaxBipartiteMatching. This method is // compatible but runs in worst-case factorial time, so we only // use it in testing for small problem sizes. template class BacktrackingMaxBPMState { public: // Does not take ownership of 'g'. explicit BacktrackingMaxBPMState(const Graph* g) : graph_(g) {} ElementMatcherPairs Compute() { if (graph_->LhsSize() == 0 || graph_->RhsSize() == 0) { return best_so_far_; } lhs_used_.assign(graph_->LhsSize(), kUnused); rhs_used_.assign(graph_->RhsSize(), kUnused); for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { matches_.clear(); RecurseInto(irhs); if (best_so_far_.size() == graph_->RhsSize()) break; } return best_so_far_; } private: static const size_t kUnused = static_cast(-1); void PushMatch(size_t lhs, size_t rhs) { matches_.push_back(ElementMatcherPair(lhs, rhs)); lhs_used_[lhs] = rhs; rhs_used_[rhs] = lhs; if (matches_.size() > best_so_far_.size()) { best_so_far_ = matches_; } } void PopMatch() { const ElementMatcherPair& back = matches_.back(); lhs_used_[back.first] = kUnused; rhs_used_[back.second] = kUnused; matches_.pop_back(); } bool RecurseInto(size_t irhs) { if (rhs_used_[irhs] != kUnused) { return true; } for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { if (lhs_used_[ilhs] != kUnused) { continue; } if (!graph_->HasEdge(ilhs, irhs)) { continue; } PushMatch(ilhs, irhs); if (best_so_far_.size() == graph_->RhsSize()) { return false; } for (size_t mi = irhs + 1; mi < graph_->RhsSize(); ++mi) { if (!RecurseInto(mi)) return false; } PopMatch(); } return true; } const Graph* graph_; // not owned std::vector lhs_used_; std::vector rhs_used_; ElementMatcherPairs matches_; ElementMatcherPairs best_so_far_; }; template const size_t BacktrackingMaxBPMState::kUnused; } // namespace // Implement a simple backtracking algorithm to determine if it is possible // to find one element per matcher, without reusing elements. template ElementMatcherPairs FindBacktrackingMaxBPM(const Graph& g) { return BacktrackingMaxBPMState(&g).Compute(); } class BacktrackingBPMTest : public ::testing::Test {}; // Tests the MaxBipartiteMatching algorithm with square matrices. // The single int param is the # of nodes on each of the left and right sides. class BipartiteTest : public ::testing::TestWithParam {}; // Verify all match graphs up to some moderate number of edges. TEST_P(BipartiteTest, Exhaustive) { size_t nodes = GetParam(); MatchMatrix graph(nodes, nodes); do { ElementMatcherPairs matches = internal::FindMaxBipartiteMatching(graph); EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), matches.size()) << "graph: " << graph.DebugString(); // Check that all elements of matches are in the graph. // Check that elements of first and second are unique. std::vector seen_element(graph.LhsSize()); std::vector seen_matcher(graph.RhsSize()); SCOPED_TRACE(PrintToString(matches)); for (size_t i = 0; i < matches.size(); ++i) { size_t ilhs = matches[i].first; size_t irhs = matches[i].second; EXPECT_TRUE(graph.HasEdge(ilhs, irhs)); EXPECT_FALSE(seen_element[ilhs]); EXPECT_FALSE(seen_matcher[irhs]); seen_element[ilhs] = true; seen_matcher[irhs] = true; } } while (graph.NextGraph()); } INSTANTIATE_TEST_SUITE_P(AllGraphs, BipartiteTest, ::testing::Range(size_t{0}, size_t{5})); // Parameterized by a pair interpreted as (LhsSize, RhsSize). class BipartiteNonSquareTest : public ::testing::TestWithParam> {}; TEST_F(BipartiteNonSquareTest, SimpleBacktracking) { // ....... // 0:-----\ : // 1:---\ | : // 2:---\ | : // 3:-\ | | : // :.......: // 0 1 2 MatchMatrix g(4, 3); constexpr std::array, 4> kEdges = { {{{0, 2}}, {{1, 1}}, {{2, 1}}, {{3, 0}}}}; for (size_t i = 0; i < kEdges.size(); ++i) { g.SetEdge(kEdges[i][0], kEdges[i][1], true); } EXPECT_THAT(FindBacktrackingMaxBPM(g), ElementsAre(Pair(3, 0), Pair(AnyOf(1, 2), 1), Pair(0, 2))) << g.DebugString(); } // Verify a few nonsquare matrices. TEST_P(BipartiteNonSquareTest, Exhaustive) { size_t nlhs = GetParam().first; size_t nrhs = GetParam().second; MatchMatrix graph(nlhs, nrhs); do { EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), internal::FindMaxBipartiteMatching(graph).size()) << "graph: " << graph.DebugString() << "\nbacktracking: " << PrintToString(FindBacktrackingMaxBPM(graph)) << "\nmax flow: " << PrintToString(internal::FindMaxBipartiteMatching(graph)); } while (graph.NextGraph()); } INSTANTIATE_TEST_SUITE_P( AllGraphs, BipartiteNonSquareTest, testing::Values(std::make_pair(1, 2), std::make_pair(2, 1), std::make_pair(3, 2), std::make_pair(2, 3), std::make_pair(4, 1), std::make_pair(1, 4), std::make_pair(4, 3), std::make_pair(3, 4))); class BipartiteRandomTest : public ::testing::TestWithParam> {}; // Verifies a large sample of larger graphs. TEST_P(BipartiteRandomTest, LargerNets) { int nodes = GetParam().first; int iters = GetParam().second; MatchMatrix graph(static_cast(nodes), static_cast(nodes)); auto seed = static_cast(GTEST_FLAG_GET(random_seed)); if (seed == 0) { seed = static_cast(time(nullptr)); } for (; iters > 0; --iters, ++seed) { srand(static_cast(seed)); graph.Randomize(); EXPECT_EQ(FindBacktrackingMaxBPM(graph).size(), internal::FindMaxBipartiteMatching(graph).size()) << " graph: " << graph.DebugString() << "\nTo reproduce the failure, rerun the test with the flag" " --" << GTEST_FLAG_PREFIX_ << "random_seed=" << seed; } } // Test argument is a std::pair representing (nodes, iters). INSTANTIATE_TEST_SUITE_P(Samples, BipartiteRandomTest, testing::Values(std::make_pair(5, 10000), std::make_pair(6, 5000), std::make_pair(7, 2000), std::make_pair(8, 500), std::make_pair(9, 100))); // Tests IsReadableTypeName(). TEST(IsReadableTypeNameTest, ReturnsTrueForShortNames) { EXPECT_TRUE(IsReadableTypeName("int")); EXPECT_TRUE(IsReadableTypeName("const unsigned char*")); EXPECT_TRUE(IsReadableTypeName("MyMap")); EXPECT_TRUE(IsReadableTypeName("void (*)(int, bool)")); } TEST(IsReadableTypeNameTest, ReturnsTrueForLongNonTemplateNonFunctionNames) { EXPECT_TRUE(IsReadableTypeName("my_long_namespace::MyClassName")); EXPECT_TRUE(IsReadableTypeName("int [5][6][7][8][9][10][11]")); EXPECT_TRUE(IsReadableTypeName("my_namespace::MyOuterClass::MyInnerClass")); } TEST(IsReadableTypeNameTest, ReturnsFalseForLongTemplateNames) { EXPECT_FALSE( IsReadableTypeName("basic_string >")); EXPECT_FALSE(IsReadableTypeName("std::vector >")); } TEST(IsReadableTypeNameTest, ReturnsFalseForLongFunctionTypeNames) { EXPECT_FALSE(IsReadableTypeName("void (&)(int, bool, char, float)")); } // Tests FormatMatcherDescription(). TEST(FormatMatcherDescriptionTest, WorksForEmptyDescription) { EXPECT_EQ("is even", FormatMatcherDescription(false, "IsEven", {}, Strings())); EXPECT_EQ("not (is even)", FormatMatcherDescription(true, "IsEven", {}, Strings())); EXPECT_EQ("equals (a: 5)", FormatMatcherDescription(false, "Equals", {"a"}, {"5"})); EXPECT_EQ( "is in range (a: 5, b: 8)", FormatMatcherDescription(false, "IsInRange", {"a", "b"}, {"5", "8"})); } INSTANTIATE_GTEST_MATCHER_TEST_P(MatcherTupleTest); TEST_P(MatcherTupleTestP, ExplainsMatchFailure) { stringstream ss1; ExplainMatchFailureTupleTo( std::make_tuple(Matcher(Eq('a')), GreaterThan(5)), std::make_tuple('a', 10), &ss1); EXPECT_EQ("", ss1.str()); // Successful match. stringstream ss2; ExplainMatchFailureTupleTo( std::make_tuple(GreaterThan(5), Matcher(Eq('a'))), std::make_tuple(2, 'b'), &ss2); EXPECT_EQ( " Expected arg #0: is > 5\n" " Actual: 2, which is 3 less than 5\n" " Expected arg #1: is equal to 'a' (97, 0x61)\n" " Actual: 'b' (98, 0x62)\n", ss2.str()); // Failed match where both arguments need explanation. stringstream ss3; ExplainMatchFailureTupleTo( std::make_tuple(GreaterThan(5), Matcher(Eq('a'))), std::make_tuple(2, 'a'), &ss3); EXPECT_EQ( " Expected arg #0: is > 5\n" " Actual: 2, which is 3 less than 5\n", ss3.str()); // Failed match where only one argument needs // explanation. } // Sample optional type implementation with minimal requirements for use with // Optional matcher. template class SampleOptional { public: using value_type = T; explicit SampleOptional(T value) : value_(std::move(value)), has_value_(true) {} SampleOptional() : value_(), has_value_(false) {} operator bool() const { return has_value_; } const T& operator*() const { return value_; } private: T value_; bool has_value_; }; TEST(OptionalTest, DescribesSelf) { const Matcher> m = Optional(Eq(1)); EXPECT_EQ("value is equal to 1", Describe(m)); } TEST(OptionalTest, ExplainsSelf) { const Matcher> m = Optional(Eq(1)); EXPECT_EQ("whose value 1 matches", Explain(m, SampleOptional(1))); EXPECT_EQ("whose value 2 doesn't match", Explain(m, SampleOptional(2))); } TEST(OptionalTest, MatchesNonEmptyOptional) { const Matcher> m1 = Optional(1); const Matcher> m2 = Optional(Eq(2)); const Matcher> m3 = Optional(Lt(3)); SampleOptional opt(1); EXPECT_TRUE(m1.Matches(opt)); EXPECT_FALSE(m2.Matches(opt)); EXPECT_TRUE(m3.Matches(opt)); } TEST(OptionalTest, DoesNotMatchNullopt) { const Matcher> m = Optional(1); SampleOptional empty; EXPECT_FALSE(m.Matches(empty)); } TEST(OptionalTest, WorksWithMoveOnly) { Matcher>> m = Optional(Eq(nullptr)); EXPECT_TRUE(m.Matches(SampleOptional>(nullptr))); } class SampleVariantIntString { public: SampleVariantIntString(int i) : i_(i), has_int_(true) {} SampleVariantIntString(const std::string& s) : s_(s), has_int_(false) {} template friend bool holds_alternative(const SampleVariantIntString& value) { return value.has_int_ == std::is_same::value; } template friend const T& get(const SampleVariantIntString& value) { return value.get_impl(static_cast(nullptr)); } private: const int& get_impl(int*) const { return i_; } const std::string& get_impl(std::string*) const { return s_; } int i_; std::string s_; bool has_int_; }; TEST(VariantTest, DescribesSelf) { const Matcher m = VariantWith(Eq(1)); EXPECT_THAT(Describe(m), ContainsRegex("is a variant<> with value of type " "'.*' and the value is equal to 1")); } TEST(VariantTest, ExplainsSelf) { const Matcher m = VariantWith(Eq(1)); EXPECT_THAT(Explain(m, SampleVariantIntString(1)), ContainsRegex("whose value 1")); EXPECT_THAT(Explain(m, SampleVariantIntString("A")), HasSubstr("whose value is not of type '")); EXPECT_THAT(Explain(m, SampleVariantIntString(2)), "whose value 2 doesn't match"); } TEST(VariantTest, FullMatch) { Matcher m = VariantWith(Eq(1)); EXPECT_TRUE(m.Matches(SampleVariantIntString(1))); m = VariantWith(Eq("1")); EXPECT_TRUE(m.Matches(SampleVariantIntString("1"))); } TEST(VariantTest, TypeDoesNotMatch) { Matcher m = VariantWith(Eq(1)); EXPECT_FALSE(m.Matches(SampleVariantIntString("1"))); m = VariantWith(Eq("1")); EXPECT_FALSE(m.Matches(SampleVariantIntString(1))); } TEST(VariantTest, InnerDoesNotMatch) { Matcher m = VariantWith(Eq(1)); EXPECT_FALSE(m.Matches(SampleVariantIntString(2))); m = VariantWith(Eq("1")); EXPECT_FALSE(m.Matches(SampleVariantIntString("2"))); } class SampleAnyType { public: explicit SampleAnyType(int i) : index_(0), i_(i) {} explicit SampleAnyType(const std::string& s) : index_(1), s_(s) {} template friend const T* any_cast(const SampleAnyType* any) { return any->get_impl(static_cast(nullptr)); } private: int index_; int i_; std::string s_; const int* get_impl(int*) const { return index_ == 0 ? &i_ : nullptr; } const std::string* get_impl(std::string*) const { return index_ == 1 ? &s_ : nullptr; } }; TEST(AnyWithTest, FullMatch) { Matcher m = AnyWith(Eq(1)); EXPECT_TRUE(m.Matches(SampleAnyType(1))); } TEST(AnyWithTest, TestBadCastType) { Matcher m = AnyWith(Eq("fail")); EXPECT_FALSE(m.Matches(SampleAnyType(1))); } TEST(AnyWithTest, TestUseInContainers) { std::vector a; a.emplace_back(1); a.emplace_back(2); a.emplace_back(3); EXPECT_THAT( a, ElementsAreArray({AnyWith(1), AnyWith(2), AnyWith(3)})); std::vector b; b.emplace_back("hello"); b.emplace_back("merhaba"); b.emplace_back("salut"); EXPECT_THAT(b, ElementsAreArray({AnyWith("hello"), AnyWith("merhaba"), AnyWith("salut")})); } TEST(AnyWithTest, TestCompare) { EXPECT_THAT(SampleAnyType(1), AnyWith(Gt(0))); } TEST(AnyWithTest, DescribesSelf) { const Matcher m = AnyWith(Eq(1)); EXPECT_THAT(Describe(m), ContainsRegex("is an 'any' type with value of type " "'.*' and the value is equal to 1")); } TEST(AnyWithTest, ExplainsSelf) { const Matcher m = AnyWith(Eq(1)); EXPECT_THAT(Explain(m, SampleAnyType(1)), ContainsRegex("whose value 1")); EXPECT_THAT(Explain(m, SampleAnyType("A")), HasSubstr("whose value is not of type '")); EXPECT_THAT(Explain(m, SampleAnyType(2)), "whose value 2 doesn't match"); } // Tests Args(m). TEST(ArgsTest, AcceptsZeroTemplateArg) { const std::tuple t(5, true); EXPECT_THAT(t, Args<>(Eq(std::tuple<>()))); EXPECT_THAT(t, Not(Args<>(Ne(std::tuple<>())))); } TEST(ArgsTest, AcceptsOneTemplateArg) { const std::tuple t(5, true); EXPECT_THAT(t, Args<0>(Eq(std::make_tuple(5)))); EXPECT_THAT(t, Args<1>(Eq(std::make_tuple(true)))); EXPECT_THAT(t, Not(Args<1>(Eq(std::make_tuple(false))))); } TEST(ArgsTest, AcceptsTwoTemplateArgs) { const std::tuple t(4, 5, 6L); // NOLINT EXPECT_THAT(t, (Args<0, 1>(Lt()))); EXPECT_THAT(t, (Args<1, 2>(Lt()))); EXPECT_THAT(t, Not(Args<0, 2>(Gt()))); } TEST(ArgsTest, AcceptsRepeatedTemplateArgs) { const std::tuple t(4, 5, 6L); // NOLINT EXPECT_THAT(t, (Args<0, 0>(Eq()))); EXPECT_THAT(t, Not(Args<1, 1>(Ne()))); } TEST(ArgsTest, AcceptsDecreasingTemplateArgs) { const std::tuple t(4, 5, 6L); // NOLINT EXPECT_THAT(t, (Args<2, 0>(Gt()))); EXPECT_THAT(t, Not(Args<2, 1>(Lt()))); } MATCHER(SumIsZero, "") { return std::get<0>(arg) + std::get<1>(arg) + std::get<2>(arg) == 0; } TEST(ArgsTest, AcceptsMoreTemplateArgsThanArityOfOriginalTuple) { EXPECT_THAT(std::make_tuple(-1, 2), (Args<0, 0, 1>(SumIsZero()))); EXPECT_THAT(std::make_tuple(1, 2), Not(Args<0, 0, 1>(SumIsZero()))); } TEST(ArgsTest, CanBeNested) { const std::tuple t(4, 5, 6L, 6); // NOLINT EXPECT_THAT(t, (Args<1, 2, 3>(Args<1, 2>(Eq())))); EXPECT_THAT(t, (Args<0, 1, 3>(Args<0, 2>(Lt())))); } TEST(ArgsTest, CanMatchTupleByValue) { typedef std::tuple Tuple3; const Matcher m = Args<1, 2>(Lt()); EXPECT_TRUE(m.Matches(Tuple3('a', 1, 2))); EXPECT_FALSE(m.Matches(Tuple3('b', 2, 2))); } TEST(ArgsTest, CanMatchTupleByReference) { typedef std::tuple Tuple3; const Matcher m = Args<0, 1>(Lt()); EXPECT_TRUE(m.Matches(Tuple3('a', 'b', 2))); EXPECT_FALSE(m.Matches(Tuple3('b', 'b', 2))); } // Validates that arg is printed as str. MATCHER_P(PrintsAs, str, "") { return testing::PrintToString(arg) == str; } TEST(ArgsTest, AcceptsTenTemplateArgs) { EXPECT_THAT(std::make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), (Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( PrintsAs("(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); EXPECT_THAT(std::make_tuple(0, 1L, 2, 3L, 4, 5, 6, 7, 8, 9), Not(Args<9, 8, 7, 6, 5, 4, 3, 2, 1, 0>( PrintsAs("(0, 8, 7, 6, 5, 4, 3, 2, 1, 0)")))); } TEST(ArgsTest, DescirbesSelfCorrectly) { const Matcher> m = Args<2, 0>(Lt()); EXPECT_EQ( "are a tuple whose fields (#2, #0) are a pair where " "the first < the second", Describe(m)); } TEST(ArgsTest, DescirbesNestedArgsCorrectly) { const Matcher&> m = Args<0, 2, 3>(Args<2, 0>(Lt())); EXPECT_EQ( "are a tuple whose fields (#0, #2, #3) are a tuple " "whose fields (#2, #0) are a pair where the first < the second", Describe(m)); } TEST(ArgsTest, DescribesNegationCorrectly) { const Matcher> m = Args<1, 0>(Gt()); EXPECT_EQ( "are a tuple whose fields (#1, #0) aren't a pair " "where the first > the second", DescribeNegation(m)); } TEST(ArgsTest, ExplainsMatchResultWithoutInnerExplanation) { const Matcher> m = Args<1, 2>(Eq()); EXPECT_EQ("whose fields (#1, #2) are (42, 42)", Explain(m, std::make_tuple(false, 42, 42))); EXPECT_EQ("whose fields (#1, #2) are (42, 43)", Explain(m, std::make_tuple(false, 42, 43))); } // For testing Args<>'s explanation. class LessThanMatcher : public MatcherInterface> { public: void DescribeTo(::std::ostream* /*os*/) const override {} bool MatchAndExplain(std::tuple value, MatchResultListener* listener) const override { const int diff = std::get<0>(value) - std::get<1>(value); if (diff > 0) { *listener << "where the first value is " << diff << " more than the second"; } return diff < 0; } }; Matcher> LessThan() { return MakeMatcher(new LessThanMatcher); } TEST(ArgsTest, ExplainsMatchResultWithInnerExplanation) { const Matcher> m = Args<0, 2>(LessThan()); EXPECT_EQ( "whose fields (#0, #2) are ('a' (97, 0x61), 42), " "where the first value is 55 more than the second", Explain(m, std::make_tuple('a', 42, 42))); EXPECT_EQ("whose fields (#0, #2) are ('\\0', 43)", Explain(m, std::make_tuple('\0', 42, 43))); } // Tests for the MATCHER*() macro family. // Tests that a simple MATCHER() definition works. MATCHER(IsEven, "") { return (arg % 2) == 0; } TEST(MatcherMacroTest, Works) { const Matcher m = IsEven(); EXPECT_TRUE(m.Matches(6)); EXPECT_FALSE(m.Matches(7)); EXPECT_EQ("is even", Describe(m)); EXPECT_EQ("not (is even)", DescribeNegation(m)); EXPECT_EQ("", Explain(m, 6)); EXPECT_EQ("", Explain(m, 7)); } // This also tests that the description string can reference 'negation'. MATCHER(IsEven2, negation ? "is odd" : "is even") { if ((arg % 2) == 0) { // Verifies that we can stream to result_listener, a listener // supplied by the MATCHER macro implicitly. *result_listener << "OK"; return true; } else { *result_listener << "% 2 == " << (arg % 2); return false; } } // This also tests that the description string can reference matcher // parameters. MATCHER_P2(EqSumOf, x, y, std::string(negation ? "doesn't equal" : "equals") + " the sum of " + PrintToString(x) + " and " + PrintToString(y)) { if (arg == (x + y)) { *result_listener << "OK"; return true; } else { // Verifies that we can stream to the underlying stream of // result_listener. if (result_listener->stream() != nullptr) { *result_listener->stream() << "diff == " << (x + y - arg); } return false; } } // Tests that the matcher description can reference 'negation' and the // matcher parameters. TEST(MatcherMacroTest, DescriptionCanReferenceNegationAndParameters) { const Matcher m1 = IsEven2(); EXPECT_EQ("is even", Describe(m1)); EXPECT_EQ("is odd", DescribeNegation(m1)); const Matcher m2 = EqSumOf(5, 9); EXPECT_EQ("equals the sum of 5 and 9", Describe(m2)); EXPECT_EQ("doesn't equal the sum of 5 and 9", DescribeNegation(m2)); } // Tests explaining match result in a MATCHER* macro. TEST(MatcherMacroTest, CanExplainMatchResult) { const Matcher m1 = IsEven2(); EXPECT_EQ("OK", Explain(m1, 4)); EXPECT_EQ("% 2 == 1", Explain(m1, 5)); const Matcher m2 = EqSumOf(1, 2); EXPECT_EQ("OK", Explain(m2, 3)); EXPECT_EQ("diff == -1", Explain(m2, 4)); } // Tests that the body of MATCHER() can reference the type of the // value being matched. MATCHER(IsEmptyString, "") { StaticAssertTypeEq<::std::string, arg_type>(); return arg.empty(); } MATCHER(IsEmptyStringByRef, "") { StaticAssertTypeEq(); return arg.empty(); } TEST(MatcherMacroTest, CanReferenceArgType) { const Matcher<::std::string> m1 = IsEmptyString(); EXPECT_TRUE(m1.Matches("")); const Matcher m2 = IsEmptyStringByRef(); EXPECT_TRUE(m2.Matches("")); } // Tests that MATCHER() can be used in a namespace. namespace matcher_test { MATCHER(IsOdd, "") { return (arg % 2) != 0; } } // namespace matcher_test TEST(MatcherMacroTest, WorksInNamespace) { Matcher m = matcher_test::IsOdd(); EXPECT_FALSE(m.Matches(4)); EXPECT_TRUE(m.Matches(5)); } // Tests that Value() can be used to compose matchers. MATCHER(IsPositiveOdd, "") { return Value(arg, matcher_test::IsOdd()) && arg > 0; } TEST(MatcherMacroTest, CanBeComposedUsingValue) { EXPECT_THAT(3, IsPositiveOdd()); EXPECT_THAT(4, Not(IsPositiveOdd())); EXPECT_THAT(-1, Not(IsPositiveOdd())); } // Tests that a simple MATCHER_P() definition works. MATCHER_P(IsGreaterThan32And, n, "") { return arg > 32 && arg > n; } TEST(MatcherPMacroTest, Works) { const Matcher m = IsGreaterThan32And(5); EXPECT_TRUE(m.Matches(36)); EXPECT_FALSE(m.Matches(5)); EXPECT_EQ("is greater than 32 and (n: 5)", Describe(m)); EXPECT_EQ("not (is greater than 32 and (n: 5))", DescribeNegation(m)); EXPECT_EQ("", Explain(m, 36)); EXPECT_EQ("", Explain(m, 5)); } // Tests that the description is calculated correctly from the matcher name. MATCHER_P(_is_Greater_Than32and_, n, "") { return arg > 32 && arg > n; } TEST(MatcherPMacroTest, GeneratesCorrectDescription) { const Matcher m = _is_Greater_Than32and_(5); EXPECT_EQ("is greater than 32 and (n: 5)", Describe(m)); EXPECT_EQ("not (is greater than 32 and (n: 5))", DescribeNegation(m)); EXPECT_EQ("", Explain(m, 36)); EXPECT_EQ("", Explain(m, 5)); } // Tests that a MATCHER_P matcher can be explicitly instantiated with // a reference parameter type. class UncopyableFoo { public: explicit UncopyableFoo(char value) : value_(value) { (void)value_; } UncopyableFoo(const UncopyableFoo&) = delete; void operator=(const UncopyableFoo&) = delete; private: char value_; }; MATCHER_P(ReferencesUncopyable, variable, "") { return &arg == &variable; } TEST(MatcherPMacroTest, WorksWhenExplicitlyInstantiatedWithReference) { UncopyableFoo foo1('1'), foo2('2'); const Matcher m = ReferencesUncopyable(foo1); EXPECT_TRUE(m.Matches(foo1)); EXPECT_FALSE(m.Matches(foo2)); // We don't want the address of the parameter printed, as most // likely it will just annoy the user. If the address is // interesting, the user should consider passing the parameter by // pointer instead. EXPECT_EQ("references uncopyable (variable: 1-byte object <31>)", Describe(m)); } // Tests that the body of MATCHER_Pn() can reference the parameter // types. MATCHER_P3(ParamTypesAreIntLongAndChar, foo, bar, baz, "") { StaticAssertTypeEq(); StaticAssertTypeEq(); // NOLINT StaticAssertTypeEq(); return arg == 0; } TEST(MatcherPnMacroTest, CanReferenceParamTypes) { EXPECT_THAT(0, ParamTypesAreIntLongAndChar(10, 20L, 'a')); } // Tests that a MATCHER_Pn matcher can be explicitly instantiated with // reference parameter types. MATCHER_P2(ReferencesAnyOf, variable1, variable2, "") { return &arg == &variable1 || &arg == &variable2; } TEST(MatcherPnMacroTest, WorksWhenExplicitlyInstantiatedWithReferences) { UncopyableFoo foo1('1'), foo2('2'), foo3('3'); const Matcher const_m = ReferencesAnyOf(foo1, foo2); EXPECT_TRUE(const_m.Matches(foo1)); EXPECT_TRUE(const_m.Matches(foo2)); EXPECT_FALSE(const_m.Matches(foo3)); const Matcher m = ReferencesAnyOf(foo1, foo2); EXPECT_TRUE(m.Matches(foo1)); EXPECT_TRUE(m.Matches(foo2)); EXPECT_FALSE(m.Matches(foo3)); } TEST(MatcherPnMacroTest, GeneratesCorretDescriptionWhenExplicitlyInstantiatedWithReferences) { UncopyableFoo foo1('1'), foo2('2'); const Matcher m = ReferencesAnyOf(foo1, foo2); // We don't want the addresses of the parameters printed, as most // likely they will just annoy the user. If the addresses are // interesting, the user should consider passing the parameters by // pointers instead. EXPECT_EQ( "references any of (variable1: 1-byte object <31>, variable2: 1-byte " "object <32>)", Describe(m)); } // Tests that a simple MATCHER_P2() definition works. MATCHER_P2(IsNotInClosedRange, low, hi, "") { return arg < low || arg > hi; } TEST(MatcherPnMacroTest, Works) { const Matcher m = IsNotInClosedRange(10, 20); // NOLINT EXPECT_TRUE(m.Matches(36L)); EXPECT_FALSE(m.Matches(15L)); EXPECT_EQ("is not in closed range (low: 10, hi: 20)", Describe(m)); EXPECT_EQ("not (is not in closed range (low: 10, hi: 20))", DescribeNegation(m)); EXPECT_EQ("", Explain(m, 36L)); EXPECT_EQ("", Explain(m, 15L)); } // Tests that MATCHER*() definitions can be overloaded on the number // of parameters; also tests MATCHER_Pn() where n >= 3. MATCHER(EqualsSumOf, "") { return arg == 0; } MATCHER_P(EqualsSumOf, a, "") { return arg == a; } MATCHER_P2(EqualsSumOf, a, b, "") { return arg == a + b; } MATCHER_P3(EqualsSumOf, a, b, c, "") { return arg == a + b + c; } MATCHER_P4(EqualsSumOf, a, b, c, d, "") { return arg == a + b + c + d; } MATCHER_P5(EqualsSumOf, a, b, c, d, e, "") { return arg == a + b + c + d + e; } MATCHER_P6(EqualsSumOf, a, b, c, d, e, f, "") { return arg == a + b + c + d + e + f; } MATCHER_P7(EqualsSumOf, a, b, c, d, e, f, g, "") { return arg == a + b + c + d + e + f + g; } MATCHER_P8(EqualsSumOf, a, b, c, d, e, f, g, h, "") { return arg == a + b + c + d + e + f + g + h; } MATCHER_P9(EqualsSumOf, a, b, c, d, e, f, g, h, i, "") { return arg == a + b + c + d + e + f + g + h + i; } MATCHER_P10(EqualsSumOf, a, b, c, d, e, f, g, h, i, j, "") { return arg == a + b + c + d + e + f + g + h + i + j; } TEST(MatcherPnMacroTest, CanBeOverloadedOnNumberOfParameters) { EXPECT_THAT(0, EqualsSumOf()); EXPECT_THAT(1, EqualsSumOf(1)); EXPECT_THAT(12, EqualsSumOf(10, 2)); EXPECT_THAT(123, EqualsSumOf(100, 20, 3)); EXPECT_THAT(1234, EqualsSumOf(1000, 200, 30, 4)); EXPECT_THAT(12345, EqualsSumOf(10000, 2000, 300, 40, 5)); EXPECT_THAT("abcdef", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f')); EXPECT_THAT("abcdefg", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g')); EXPECT_THAT("abcdefgh", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h")); EXPECT_THAT("abcdefghi", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", 'i')); EXPECT_THAT("abcdefghij", EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", 'i', ::std::string("j"))); EXPECT_THAT(1, Not(EqualsSumOf())); EXPECT_THAT(-1, Not(EqualsSumOf(1))); EXPECT_THAT(-12, Not(EqualsSumOf(10, 2))); EXPECT_THAT(-123, Not(EqualsSumOf(100, 20, 3))); EXPECT_THAT(-1234, Not(EqualsSumOf(1000, 200, 30, 4))); EXPECT_THAT(-12345, Not(EqualsSumOf(10000, 2000, 300, 40, 5))); EXPECT_THAT("abcdef ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f'))); EXPECT_THAT("abcdefg ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g'))); EXPECT_THAT("abcdefgh ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h"))); EXPECT_THAT("abcdefghi ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", 'i'))); EXPECT_THAT("abcdefghij ", Not(EqualsSumOf(::std::string("a"), 'b', 'c', "d", "e", 'f', 'g', "h", 'i', ::std::string("j")))); } // Tests that a MATCHER_Pn() definition can be instantiated with any // compatible parameter types. TEST(MatcherPnMacroTest, WorksForDifferentParameterTypes) { EXPECT_THAT(123, EqualsSumOf(100L, 20, static_cast(3))); EXPECT_THAT("abcd", EqualsSumOf(::std::string("a"), "b", 'c', "d")); EXPECT_THAT(124, Not(EqualsSumOf(100L, 20, static_cast(3)))); EXPECT_THAT("abcde", Not(EqualsSumOf(::std::string("a"), "b", 'c', "d"))); } // Tests that the matcher body can promote the parameter types. MATCHER_P2(EqConcat, prefix, suffix, "") { // The following lines promote the two parameters to desired types. std::string prefix_str(prefix); char suffix_char = static_cast(suffix); return arg == prefix_str + suffix_char; } TEST(MatcherPnMacroTest, SimpleTypePromotion) { Matcher no_promo = EqConcat(std::string("foo"), 't'); Matcher promo = EqConcat("foo", static_cast('t')); EXPECT_FALSE(no_promo.Matches("fool")); EXPECT_FALSE(promo.Matches("fool")); EXPECT_TRUE(no_promo.Matches("foot")); EXPECT_TRUE(promo.Matches("foot")); } // Verifies the type of a MATCHER*. TEST(MatcherPnMacroTest, TypesAreCorrect) { // EqualsSumOf() must be assignable to a EqualsSumOfMatcher variable. EqualsSumOfMatcher a0 = EqualsSumOf(); // EqualsSumOf(1) must be assignable to a EqualsSumOfMatcherP variable. EqualsSumOfMatcherP a1 = EqualsSumOf(1); // EqualsSumOf(p1, ..., pk) must be assignable to a EqualsSumOfMatcherPk // variable, and so on. EqualsSumOfMatcherP2 a2 = EqualsSumOf(1, '2'); EqualsSumOfMatcherP3 a3 = EqualsSumOf(1, 2, '3'); EqualsSumOfMatcherP4 a4 = EqualsSumOf(1, 2, 3, '4'); EqualsSumOfMatcherP5 a5 = EqualsSumOf(1, 2, 3, 4, '5'); EqualsSumOfMatcherP6 a6 = EqualsSumOf(1, 2, 3, 4, 5, '6'); EqualsSumOfMatcherP7 a7 = EqualsSumOf(1, 2, 3, 4, 5, 6, '7'); EqualsSumOfMatcherP8 a8 = EqualsSumOf(1, 2, 3, 4, 5, 6, 7, '8'); EqualsSumOfMatcherP9 a9 = EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, '9'); EqualsSumOfMatcherP10 a10 = EqualsSumOf(1, 2, 3, 4, 5, 6, 7, 8, 9, '0'); // Avoid "unused variable" warnings. (void)a0; (void)a1; (void)a2; (void)a3; (void)a4; (void)a5; (void)a6; (void)a7; (void)a8; (void)a9; (void)a10; } // Tests that matcher-typed parameters can be used in Value() inside a // MATCHER_Pn definition. // Succeeds if arg matches exactly 2 of the 3 matchers. MATCHER_P3(TwoOf, m1, m2, m3, "") { const int count = static_cast(Value(arg, m1)) + static_cast(Value(arg, m2)) + static_cast(Value(arg, m3)); return count == 2; } TEST(MatcherPnMacroTest, CanUseMatcherTypedParameterInValue) { EXPECT_THAT(42, TwoOf(Gt(0), Lt(50), Eq(10))); EXPECT_THAT(0, Not(TwoOf(Gt(-1), Lt(1), Eq(0)))); } // Tests Contains().Times(). INSTANTIATE_GTEST_MATCHER_TEST_P(ContainsTimes); TEST(ContainsTimes, ListMatchesWhenElementQuantityMatches) { list some_list; some_list.push_back(3); some_list.push_back(1); some_list.push_back(2); some_list.push_back(3); EXPECT_THAT(some_list, Contains(3).Times(2)); EXPECT_THAT(some_list, Contains(2).Times(1)); EXPECT_THAT(some_list, Contains(Ge(2)).Times(3)); EXPECT_THAT(some_list, Contains(Ge(2)).Times(Gt(2))); EXPECT_THAT(some_list, Contains(4).Times(0)); EXPECT_THAT(some_list, Contains(_).Times(4)); EXPECT_THAT(some_list, Not(Contains(5).Times(1))); EXPECT_THAT(some_list, Contains(5).Times(_)); // Times(_) always matches EXPECT_THAT(some_list, Not(Contains(3).Times(1))); EXPECT_THAT(some_list, Contains(3).Times(Not(1))); EXPECT_THAT(list{}, Not(Contains(_))); } TEST_P(ContainsTimesP, ExplainsMatchResultCorrectly) { const int a[2] = {1, 2}; Matcher m = Contains(2).Times(3); EXPECT_EQ( "whose element #1 matches but whose match quantity of 1 does not match", Explain(m, a)); m = Contains(3).Times(0); EXPECT_EQ("has no element that matches and whose match quantity of 0 matches", Explain(m, a)); m = Contains(3).Times(4); EXPECT_EQ( "has no element that matches and whose match quantity of 0 does not " "match", Explain(m, a)); m = Contains(2).Times(4); EXPECT_EQ( "whose element #1 matches but whose match quantity of 1 does not " "match", Explain(m, a)); m = Contains(GreaterThan(0)).Times(2); EXPECT_EQ("whose elements (0, 1) match and whose match quantity of 2 matches", Explain(m, a)); m = Contains(GreaterThan(10)).Times(Gt(1)); EXPECT_EQ( "has no element that matches and whose match quantity of 0 does not " "match", Explain(m, a)); m = Contains(GreaterThan(0)).Times(GreaterThan(5)); EXPECT_EQ( "whose elements (0, 1) match but whose match quantity of 2 does not " "match, which is 3 less than 5", Explain(m, a)); } TEST(ContainsTimes, DescribesItselfCorrectly) { Matcher> m = Contains(1).Times(2); EXPECT_EQ("quantity of elements that match is equal to 1 is equal to 2", Describe(m)); Matcher> m2 = Not(m); EXPECT_EQ("quantity of elements that match is equal to 1 isn't equal to 2", Describe(m2)); } // Tests AllOfArray() TEST(AllOfArrayTest, BasicForms) { // Iterator std::vector v0{}; std::vector v1{1}; std::vector v2{2, 3}; std::vector v3{4, 4, 4}; EXPECT_THAT(0, AllOfArray(v0.begin(), v0.end())); EXPECT_THAT(1, AllOfArray(v1.begin(), v1.end())); EXPECT_THAT(2, Not(AllOfArray(v1.begin(), v1.end()))); EXPECT_THAT(3, Not(AllOfArray(v2.begin(), v2.end()))); EXPECT_THAT(4, AllOfArray(v3.begin(), v3.end())); // Pointer + size int ar[6] = {1, 2, 3, 4, 4, 4}; EXPECT_THAT(0, AllOfArray(ar, 0)); EXPECT_THAT(1, AllOfArray(ar, 1)); EXPECT_THAT(2, Not(AllOfArray(ar, 1))); EXPECT_THAT(3, Not(AllOfArray(ar + 1, 3))); EXPECT_THAT(4, AllOfArray(ar + 3, 3)); // Array // int ar0[0]; Not usable int ar1[1] = {1}; int ar2[2] = {2, 3}; int ar3[3] = {4, 4, 4}; // EXPECT_THAT(0, Not(AllOfArray(ar0))); // Cannot work EXPECT_THAT(1, AllOfArray(ar1)); EXPECT_THAT(2, Not(AllOfArray(ar1))); EXPECT_THAT(3, Not(AllOfArray(ar2))); EXPECT_THAT(4, AllOfArray(ar3)); // Container EXPECT_THAT(0, AllOfArray(v0)); EXPECT_THAT(1, AllOfArray(v1)); EXPECT_THAT(2, Not(AllOfArray(v1))); EXPECT_THAT(3, Not(AllOfArray(v2))); EXPECT_THAT(4, AllOfArray(v3)); // Initializer EXPECT_THAT(0, AllOfArray({})); // Requires template arg. EXPECT_THAT(1, AllOfArray({1})); EXPECT_THAT(2, Not(AllOfArray({1}))); EXPECT_THAT(3, Not(AllOfArray({2, 3}))); EXPECT_THAT(4, AllOfArray({4, 4, 4})); } TEST(AllOfArrayTest, Matchers) { // vector std::vector> matchers{Ge(1), Lt(2)}; EXPECT_THAT(0, Not(AllOfArray(matchers))); EXPECT_THAT(1, AllOfArray(matchers)); EXPECT_THAT(2, Not(AllOfArray(matchers))); // initializer_list EXPECT_THAT(0, Not(AllOfArray({Ge(0), Ge(1)}))); EXPECT_THAT(1, AllOfArray({Ge(0), Ge(1)})); } INSTANTIATE_GTEST_MATCHER_TEST_P(AnyOfArrayTest); TEST(AnyOfArrayTest, BasicForms) { // Iterator std::vector v0{}; std::vector v1{1}; std::vector v2{2, 3}; EXPECT_THAT(0, Not(AnyOfArray(v0.begin(), v0.end()))); EXPECT_THAT(1, AnyOfArray(v1.begin(), v1.end())); EXPECT_THAT(2, Not(AnyOfArray(v1.begin(), v1.end()))); EXPECT_THAT(3, AnyOfArray(v2.begin(), v2.end())); EXPECT_THAT(4, Not(AnyOfArray(v2.begin(), v2.end()))); // Pointer + size int ar[3] = {1, 2, 3}; EXPECT_THAT(0, Not(AnyOfArray(ar, 0))); EXPECT_THAT(1, AnyOfArray(ar, 1)); EXPECT_THAT(2, Not(AnyOfArray(ar, 1))); EXPECT_THAT(3, AnyOfArray(ar + 1, 2)); EXPECT_THAT(4, Not(AnyOfArray(ar + 1, 2))); // Array // int ar0[0]; Not usable int ar1[1] = {1}; int ar2[2] = {2, 3}; // EXPECT_THAT(0, Not(AnyOfArray(ar0))); // Cannot work EXPECT_THAT(1, AnyOfArray(ar1)); EXPECT_THAT(2, Not(AnyOfArray(ar1))); EXPECT_THAT(3, AnyOfArray(ar2)); EXPECT_THAT(4, Not(AnyOfArray(ar2))); // Container EXPECT_THAT(0, Not(AnyOfArray(v0))); EXPECT_THAT(1, AnyOfArray(v1)); EXPECT_THAT(2, Not(AnyOfArray(v1))); EXPECT_THAT(3, AnyOfArray(v2)); EXPECT_THAT(4, Not(AnyOfArray(v2))); // Initializer EXPECT_THAT(0, Not(AnyOfArray({}))); // Requires template arg. EXPECT_THAT(1, AnyOfArray({1})); EXPECT_THAT(2, Not(AnyOfArray({1}))); EXPECT_THAT(3, AnyOfArray({2, 3})); EXPECT_THAT(4, Not(AnyOfArray({2, 3}))); } TEST(AnyOfArrayTest, Matchers) { // We negate test AllOfArrayTest.Matchers. // vector std::vector> matchers{Lt(1), Ge(2)}; EXPECT_THAT(0, AnyOfArray(matchers)); EXPECT_THAT(1, Not(AnyOfArray(matchers))); EXPECT_THAT(2, AnyOfArray(matchers)); // initializer_list EXPECT_THAT(0, AnyOfArray({Lt(0), Lt(1)})); EXPECT_THAT(1, Not(AllOfArray({Lt(0), Lt(1)}))); } TEST_P(AnyOfArrayTestP, ExplainsMatchResultCorrectly) { // AnyOfArray and AllOfArry use the same underlying template-template, // thus it is sufficient to test one here. const std::vector v0{}; const std::vector v1{1}; const std::vector v2{2, 3}; const Matcher m0 = AnyOfArray(v0); const Matcher m1 = AnyOfArray(v1); const Matcher m2 = AnyOfArray(v2); EXPECT_EQ("", Explain(m0, 0)); EXPECT_EQ("", Explain(m1, 1)); EXPECT_EQ("", Explain(m1, 2)); EXPECT_EQ("", Explain(m2, 3)); EXPECT_EQ("", Explain(m2, 4)); EXPECT_EQ("()", Describe(m0)); EXPECT_EQ("(is equal to 1)", Describe(m1)); EXPECT_EQ("(is equal to 2) or (is equal to 3)", Describe(m2)); EXPECT_EQ("()", DescribeNegation(m0)); EXPECT_EQ("(isn't equal to 1)", DescribeNegation(m1)); EXPECT_EQ("(isn't equal to 2) and (isn't equal to 3)", DescribeNegation(m2)); // Explain with matchers const Matcher g1 = AnyOfArray({GreaterThan(1)}); const Matcher g2 = AnyOfArray({GreaterThan(1), GreaterThan(2)}); // Explains the first positive match and all prior negative matches... EXPECT_EQ("which is 1 less than 1", Explain(g1, 0)); EXPECT_EQ("which is the same as 1", Explain(g1, 1)); EXPECT_EQ("which is 1 more than 1", Explain(g1, 2)); EXPECT_EQ("which is 1 less than 1, and which is 2 less than 2", Explain(g2, 0)); EXPECT_EQ("which is the same as 1, and which is 1 less than 2", Explain(g2, 1)); EXPECT_EQ("which is 1 more than 1", // Only the first Explain(g2, 2)); } MATCHER(IsNotNull, "") { return arg != nullptr; } // Verifies that a matcher defined using MATCHER() can work on // move-only types. TEST(MatcherMacroTest, WorksOnMoveOnlyType) { std::unique_ptr p(new int(3)); EXPECT_THAT(p, IsNotNull()); EXPECT_THAT(std::unique_ptr(), Not(IsNotNull())); } MATCHER_P(UniquePointee, pointee, "") { return *arg == pointee; } // Verifies that a matcher defined using MATCHER_P*() can work on // move-only types. TEST(MatcherPMacroTest, WorksOnMoveOnlyType) { std::unique_ptr p(new int(3)); EXPECT_THAT(p, UniquePointee(3)); EXPECT_THAT(p, Not(UniquePointee(2))); } #if GTEST_HAS_EXCEPTIONS // std::function is used below for compatibility with older copies of // GCC. Normally, a raw lambda is all that is needed. // Test that examples from documentation compile TEST(ThrowsTest, Examples) { EXPECT_THAT( std::function([]() { throw std::runtime_error("message"); }), Throws()); EXPECT_THAT( std::function([]() { throw std::runtime_error("message"); }), ThrowsMessage(HasSubstr("message"))); } TEST(ThrowsTest, PrintsExceptionWhat) { EXPECT_THAT( std::function([]() { throw std::runtime_error("ABC123XYZ"); }), ThrowsMessage(HasSubstr("ABC123XYZ"))); } TEST(ThrowsTest, DoesNotGenerateDuplicateCatchClauseWarning) { EXPECT_THAT(std::function([]() { throw std::exception(); }), Throws()); } TEST(ThrowsTest, CallableExecutedExactlyOnce) { size_t a = 0; EXPECT_THAT(std::function([&a]() { a++; throw 10; }), Throws()); EXPECT_EQ(a, 1u); EXPECT_THAT(std::function([&a]() { a++; throw std::runtime_error("message"); }), Throws()); EXPECT_EQ(a, 2u); EXPECT_THAT(std::function([&a]() { a++; throw std::runtime_error("message"); }), ThrowsMessage(HasSubstr("message"))); EXPECT_EQ(a, 3u); EXPECT_THAT(std::function([&a]() { a++; throw std::runtime_error("message"); }), Throws( Property(&std::runtime_error::what, HasSubstr("message")))); EXPECT_EQ(a, 4u); } TEST(ThrowsTest, Describe) { Matcher> matcher = Throws(); std::stringstream ss; matcher.DescribeTo(&ss); auto explanation = ss.str(); EXPECT_THAT(explanation, HasSubstr("std::runtime_error")); } TEST(ThrowsTest, Success) { Matcher> matcher = Throws(); StringMatchResultListener listener; EXPECT_TRUE(matcher.MatchAndExplain( []() { throw std::runtime_error("error message"); }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("std::runtime_error")); } TEST(ThrowsTest, FailWrongType) { Matcher> matcher = Throws(); StringMatchResultListener listener; EXPECT_FALSE(matcher.MatchAndExplain( []() { throw std::logic_error("error message"); }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("std::logic_error")); EXPECT_THAT(listener.str(), HasSubstr("\"error message\"")); } TEST(ThrowsTest, FailWrongTypeNonStd) { Matcher> matcher = Throws(); StringMatchResultListener listener; EXPECT_FALSE(matcher.MatchAndExplain([]() { throw 10; }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("throws an exception of an unknown type")); } TEST(ThrowsTest, FailNoThrow) { Matcher> matcher = Throws(); StringMatchResultListener listener; EXPECT_FALSE(matcher.MatchAndExplain([]() { (void)0; }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("does not throw any exception")); } class ThrowsPredicateTest : public TestWithParam>> {}; TEST_P(ThrowsPredicateTest, Describe) { Matcher> matcher = GetParam(); std::stringstream ss; matcher.DescribeTo(&ss); auto explanation = ss.str(); EXPECT_THAT(explanation, HasSubstr("std::runtime_error")); EXPECT_THAT(explanation, HasSubstr("error message")); } TEST_P(ThrowsPredicateTest, Success) { Matcher> matcher = GetParam(); StringMatchResultListener listener; EXPECT_TRUE(matcher.MatchAndExplain( []() { throw std::runtime_error("error message"); }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("std::runtime_error")); } TEST_P(ThrowsPredicateTest, FailWrongType) { Matcher> matcher = GetParam(); StringMatchResultListener listener; EXPECT_FALSE(matcher.MatchAndExplain( []() { throw std::logic_error("error message"); }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("std::logic_error")); EXPECT_THAT(listener.str(), HasSubstr("\"error message\"")); } TEST_P(ThrowsPredicateTest, FailWrongTypeNonStd) { Matcher> matcher = GetParam(); StringMatchResultListener listener; EXPECT_FALSE(matcher.MatchAndExplain([]() { throw 10; }, &listener)); EXPECT_THAT(listener.str(), HasSubstr("throws an exception of an unknown type")); } TEST_P(ThrowsPredicateTest, FailNoThrow) { Matcher> matcher = GetParam(); StringMatchResultListener listener; EXPECT_FALSE(matcher.MatchAndExplain([]() {}, &listener)); EXPECT_THAT(listener.str(), HasSubstr("does not throw any exception")); } INSTANTIATE_TEST_SUITE_P( AllMessagePredicates, ThrowsPredicateTest, Values(Matcher>( ThrowsMessage(HasSubstr("error message"))))); // Tests that Throws(Matcher{}) compiles even when E2 != const E1&. TEST(ThrowsPredicateCompilesTest, ExceptionMatcherAcceptsBroadType) { { Matcher> matcher = ThrowsMessage(HasSubstr("error message")); EXPECT_TRUE( matcher.Matches([]() { throw std::runtime_error("error message"); })); EXPECT_FALSE( matcher.Matches([]() { throw std::runtime_error("wrong message"); })); } { Matcher inner = Eq(10); Matcher> matcher = Throws(inner); EXPECT_TRUE(matcher.Matches([]() { throw(uint32_t) 10; })); EXPECT_FALSE(matcher.Matches([]() { throw(uint32_t) 11; })); } } // Tests that ThrowsMessage("message") is equivalent // to ThrowsMessage(Eq("message")). TEST(ThrowsPredicateCompilesTest, MessageMatcherAcceptsNonMatcher) { Matcher> matcher = ThrowsMessage("error message"); EXPECT_TRUE( matcher.Matches([]() { throw std::runtime_error("error message"); })); EXPECT_FALSE(matcher.Matches( []() { throw std::runtime_error("wrong error message"); })); } #endif // GTEST_HAS_EXCEPTIONS } // namespace } // namespace gmock_matchers_test } // namespace testing #ifdef _MSC_VER #pragma warning(pop) #endif