/* * Generic PCI host controller as described in PCI Bus Binding to Open Firmware * * Copyright (C) 2016, Red Hat Inc, Alexander Gordeev * * This work is licensed under the terms of the GNU LGPL, version 2. */ #include "libcflat.h" #include "devicetree.h" #include "alloc.h" #include "pci.h" #include "asm/pci.h" #include "asm/io.h" #include "pci-host-generic.h" #include static struct pci_host_bridge *pci_host_bridge; static int of_flags_to_pci_type(u32 of_flags) { static int type_map[] = { [1] = PCI_BASE_ADDRESS_SPACE_IO, [2] = PCI_BASE_ADDRESS_MEM_TYPE_32, [3] = PCI_BASE_ADDRESS_MEM_TYPE_64 }; int idx = (of_flags >> 24) & 0x03; int res; assert(idx > 0); res = type_map[idx]; if (of_flags & 0x40000000) res |= PCI_BASE_ADDRESS_MEM_PREFETCH; return res; } static int pci_bar_type(u32 bar) { if (bar & PCI_BASE_ADDRESS_SPACE) return PCI_BASE_ADDRESS_SPACE_IO; else return bar & (PCI_BASE_ADDRESS_MEM_TYPE_MASK | PCI_BASE_ADDRESS_MEM_PREFETCH); } /* * Probe DT for a generic PCI host controller * See kernel Documentation/devicetree/bindings/pci/host-generic-pci.txt * and function gen_pci_probe() in drivers/pci/host/pci-host-generic.c */ static struct pci_host_bridge *pci_dt_probe(void) { struct pci_host_bridge *host; const void *fdt = dt_fdt(); const struct fdt_property *prop; struct dt_pbus_reg base; struct dt_device dt_dev; struct dt_bus dt_bus; struct pci_addr_space *as; fdt32_t *data; u32 bus, bus_max; u32 nac, nsc, nac_root, nsc_root; int nr_range_cells, nr_addr_spaces; int ret, node, len, i; if (!dt_available()) { printf("No device tree found\n"); return NULL; } dt_bus_init_defaults(&dt_bus); dt_device_init(&dt_dev, &dt_bus, NULL); node = fdt_path_offset(fdt, "/"); assert(node >= 0); ret = dt_get_nr_cells(node, &nac_root, &nsc_root); assert(ret == 0); assert(nac_root == 1 || nac_root == 2); node = fdt_node_offset_by_compatible(fdt, node, "pci-host-ecam-generic"); if (node == -FDT_ERR_NOTFOUND) { printf("No PCIe ECAM compatible controller found\n"); return NULL; } assert(node >= 0); prop = fdt_get_property(fdt, node, "device_type", &len); assert(prop && len == 4 && !strcmp((char *)prop->data, "pci")); dt_device_bind_node(&dt_dev, node); ret = dt_pbus_get_base(&dt_dev, &base); assert(ret == 0); prop = fdt_get_property(fdt, node, "bus-range", &len); if (prop == NULL) { assert(len == -FDT_ERR_NOTFOUND); bus = 0x00; bus_max = 0xff; } else { data = (fdt32_t *)prop->data; bus = fdt32_to_cpu(data[0]); bus_max = fdt32_to_cpu(data[1]); assert(bus <= bus_max); } assert(bus_max < base.size / (1 << PCI_ECAM_BUS_SHIFT)); ret = dt_get_nr_cells(node, &nac, &nsc); assert(ret == 0); assert(nac == 3 && nsc == 2); prop = fdt_get_property(fdt, node, "ranges", &len); assert(prop != NULL); nr_range_cells = nac + nsc + nac_root; nr_addr_spaces = (len / 4) / nr_range_cells; assert(nr_addr_spaces); host = malloc(sizeof(*host) + sizeof(host->addr_space[0]) * nr_addr_spaces); assert(host != NULL); host->start = base.addr; host->size = base.size; host->bus = bus; host->bus_max = bus_max; host->nr_addr_spaces = nr_addr_spaces; data = (fdt32_t *)prop->data; as = &host->addr_space[0]; for (i = 0; i < nr_addr_spaces; i++) { /* * The PCI binding encodes the PCI address with three * cells as follows: * * phys.hi cell: npt000ss bbbbbbbb dddddfff rrrrrrrr * phys.mid cell: hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh * phys.lo cell: llllllll llllllll llllllll llllllll * * PCI device bus address and flags are encoded into phys.high * PCI 64 bit address is encoded into phys.mid and phys.low */ as->type = of_flags_to_pci_type(fdt32_to_cpu(data[0])); as->pci_start = ((u64)fdt32_to_cpu(data[1]) << 32) | fdt32_to_cpu(data[2]); if (nr_range_cells == 6) { as->start = fdt32_to_cpu(data[3]); as->size = ((u64)fdt32_to_cpu(data[4]) << 32) | fdt32_to_cpu(data[5]); } else { as->start = ((u64)fdt32_to_cpu(data[3]) << 32) | fdt32_to_cpu(data[4]); as->size = ((u64)fdt32_to_cpu(data[5]) << 32) | fdt32_to_cpu(data[6]); } data += nr_range_cells; as++; } return host; } static bool pci_alloc_resource(struct pci_dev *dev, int bar_num, u64 *addr) { struct pci_host_bridge *host = pci_host_bridge; struct pci_addr_space *as = &host->addr_space[0]; u32 bar; u64 size, pci_addr; int type, i; *addr = INVALID_PHYS_ADDR; size = pci_bar_size(dev, bar_num); if (!size) return false; bar = pci_bar_get(dev, bar_num); type = pci_bar_type(bar); if (type & PCI_BASE_ADDRESS_MEM_TYPE_MASK) type &= ~PCI_BASE_ADDRESS_MEM_PREFETCH; for (i = 0; i < host->nr_addr_spaces; i++) { if (as->type == type) break; as++; } if (i >= host->nr_addr_spaces) { printf("%s: warning: can't satisfy request for ", __func__); pci_dev_print_id(dev); printf(" "); pci_bar_print(dev, bar_num); printf("\n"); return false; } pci_addr = ALIGN(as->pci_start + as->allocated, size); size += pci_addr - (as->pci_start + as->allocated); assert(as->allocated + size <= as->size); *addr = pci_addr; as->allocated += size; return true; } bool pci_probe(void) { struct pci_dev pci_dev; pcidevaddr_t dev; u8 header; u32 cmd; int i; assert(!pci_host_bridge); pci_host_bridge = pci_dt_probe(); if (!pci_host_bridge) return false; for (dev = 0; dev < PCI_DEVFN_MAX; dev++) { if (!pci_dev_exists(dev)) continue; pci_dev_init(&pci_dev, dev); /* We are only interested in normal PCI devices */ header = pci_config_readb(dev, PCI_HEADER_TYPE); if ((header & PCI_HEADER_TYPE_MASK) != PCI_HEADER_TYPE_NORMAL) continue; cmd = PCI_COMMAND_SERR | PCI_COMMAND_PARITY; for (i = 0; i < PCI_BAR_NUM; i++) { u64 addr; if (pci_alloc_resource(&pci_dev, i, &addr)) { pci_bar_set_addr(&pci_dev, i, addr); if (pci_bar_is_memory(&pci_dev, i)) cmd |= PCI_COMMAND_MEMORY; else cmd |= PCI_COMMAND_IO; } if (pci_bar_is64(&pci_dev, i)) i++; } pci_config_writew(dev, PCI_COMMAND, cmd); } return true; } /* * This function is to be called from pci_translate_addr() to provide * mapping between this host bridge's PCI busses address and CPU physical * address. */ phys_addr_t pci_host_bridge_get_paddr(u64 pci_addr) { struct pci_host_bridge *host = pci_host_bridge; struct pci_addr_space *as = &host->addr_space[0]; int i; for (i = 0; i < host->nr_addr_spaces; i++) { if (pci_addr >= as->pci_start && pci_addr < as->pci_start + as->size) return as->start + (pci_addr - as->pci_start); as++; } return INVALID_PHYS_ADDR; } static void __iomem *pci_get_dev_conf(struct pci_host_bridge *host, int devfn) { return (void __iomem *)(unsigned long) host->start + (devfn << PCI_ECAM_DEVFN_SHIFT); } u8 pci_config_readb(pcidevaddr_t dev, u8 off) { void __iomem *conf = pci_get_dev_conf(pci_host_bridge, dev); return readb(conf + off); } u16 pci_config_readw(pcidevaddr_t dev, u8 off) { void __iomem *conf = pci_get_dev_conf(pci_host_bridge, dev); return readw(conf + off); } u32 pci_config_readl(pcidevaddr_t dev, u8 off) { void __iomem *conf = pci_get_dev_conf(pci_host_bridge, dev); return readl(conf + off); } void pci_config_writeb(pcidevaddr_t dev, u8 off, u8 val) { void __iomem *conf = pci_get_dev_conf(pci_host_bridge, dev); writeb(val, conf + off); } void pci_config_writew(pcidevaddr_t dev, u8 off, u16 val) { void __iomem *conf = pci_get_dev_conf(pci_host_bridge, dev); writew(val, conf + off); } void pci_config_writel(pcidevaddr_t dev, u8 off, u32 val) { void __iomem *conf = pci_get_dev_conf(pci_host_bridge, dev); writel(val, conf + off); }