/* * iLBC - a library for the iLBC codec * * lsf.c - The iLBC low bit rate speech codec. * * Adapted by Steve Underwood from the reference * iLBC code supplied in RFC3951. * * Original code Copyright (C) The Internet Society (2004). * All changes to produce this version Copyright (C) 2008 by Steve Underwood * All Rights Reserved. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * $Id: lsf.c,v 1.2 2008/03/06 12:27:38 steveu Exp $ */ /*! \file */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include "iLBC_define.h" #include "lsf.h" /*----------------------------------------------------------------* * conversion from lpc coefficients to lsf coefficients *---------------------------------------------------------------*/ void a2lsf(float *freq, /* (o) lsf coefficients */ float *a) /* (i) lpc coefficients */ { static const float steps[LSF_NUMBER_OF_STEPS] = { 0.00635f, 0.003175f, 0.0015875f, 0.00079375f }; float step; int step_idx; int lsp_index; float p[LPC_HALFORDER]; float q[LPC_HALFORDER]; float p_pre[LPC_HALFORDER]; float q_pre[LPC_HALFORDER]; float old_p; float old_q; float *old; float *pq_coef; float omega; float old_omega; int i; float hlp; float hlp1; float hlp2; float hlp3; float hlp4; float hlp5; for (i = 0; i < LPC_HALFORDER; i++) { p[i] = -1.0f*(a[i + 1] + a[ILBC_LPC_FILTERORDER - i]); q[i] = a[ILBC_LPC_FILTERORDER - i] - a[i + 1]; } p_pre[0] = -1.0f - p[0]; p_pre[1] = -p_pre[0] - p[1]; p_pre[2] = -p_pre[1] - p[2]; p_pre[3] = -p_pre[2] - p[3]; p_pre[4] = -p_pre[3] - p[4]; p_pre[4] = p_pre[4]/2.0f; q_pre[0] = 1.0f - q[0]; q_pre[1] = q_pre[0] - q[1]; q_pre[2] = q_pre[1] - q[2]; q_pre[3] = q_pre[2] - q[3]; q_pre[4] = q_pre[3] - q[4]; q_pre[4] = q_pre[4]/2.0f; omega = 0.0f; old_omega = 0.0f; old_p = FLOAT_MAX; old_q = FLOAT_MAX; /* Here we loop through lsp_index to find all the ILBC_LPC_FILTERORDER roots for omega. */ for (lsp_index = 0; lsp_index < ILBC_LPC_FILTERORDER; lsp_index++) { /* Depending on lsp_index being even or odd, we alternatively solve the roots for the two LSP equations. */ if ((lsp_index & 0x1) == 0) { pq_coef = p_pre; old = &old_p; } else { pq_coef = q_pre; old = &old_q; } /* Start with low resolution grid */ for (step_idx = 0, step = steps[step_idx]; step_idx < LSF_NUMBER_OF_STEPS; ) { /* cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) + pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */ hlp = cosf(omega*TWO_PI); hlp1 = 2.0f*hlp+pq_coef[0]; hlp2 = 2.0f*hlp*hlp1 - 1.0f + pq_coef[1]; hlp3 = 2.0f*hlp*hlp2 - hlp1 + pq_coef[2]; hlp4 = 2.0f*hlp*hlp3 - hlp2 + pq_coef[3]; hlp5 = hlp*hlp4 - hlp3 + pq_coef[4]; if (((hlp5 * (*old)) <= 0.0f) || (omega >= 0.5f)) { if (step_idx == (LSF_NUMBER_OF_STEPS - 1)) { if (fabsf(hlp5) >= fabsf(*old)) freq[lsp_index] = omega - step; else freq[lsp_index] = omega; if ((*old) >= 0.0f) *old = -1.0f*FLOAT_MAX; else *old = FLOAT_MAX; omega = old_omega; step_idx = 0; step_idx = LSF_NUMBER_OF_STEPS; } else { if (step_idx == 0) old_omega = omega; step_idx++; omega -= steps[step_idx]; /* Go back one grid step */ step = steps[step_idx]; } } else { /* increment omega until they are of different sign, and we know there is at least one root between omega and old_omega */ *old = hlp5; omega += step; } } } for (i = 0; i < ILBC_LPC_FILTERORDER; i++) freq[i] *= TWO_PI; } /*----------------------------------------------------------------* * conversion from lsf coefficients to lpc coefficients *---------------------------------------------------------------*/ void lsf2a(float *a_coef, /* (o) lpc coefficients */ float *freq) /* (i) lsf coefficients */ { int i; int j; float hlp; float p[LPC_HALFORDER]; float q[LPC_HALFORDER]; float a[LPC_HALFORDER + 1]; float a1[LPC_HALFORDER]; float a2[LPC_HALFORDER]; float b[LPC_HALFORDER + 1]; float b1[LPC_HALFORDER]; float b2[LPC_HALFORDER]; for (i = 0; i < ILBC_LPC_FILTERORDER; i++) freq[i] *= PI2; /* Check input for ill-conditioned cases. This part is not found in the TIA standard. It involves the following 2 IF blocks. If "freq" is judged ill-conditioned, then we first modify freq[0] and freq[LPC_HALFORDER-1] (normally LPC_HALFORDER = 10 for LPC applications), then we adjust the other "freq" values slightly */ if ((freq[0] <= 0.0f) || (freq[ILBC_LPC_FILTERORDER - 1] >= 0.5f)) { if (freq[0] <= 0.0f) freq[0] = 0.022f; if (freq[ILBC_LPC_FILTERORDER - 1] >= 0.5f) freq[ILBC_LPC_FILTERORDER - 1] = 0.499f; hlp = (freq[ILBC_LPC_FILTERORDER - 1] - freq[0])/(float) (ILBC_LPC_FILTERORDER - 1); for (i = 1; i < ILBC_LPC_FILTERORDER; i++) freq[i] = freq[i - 1] + hlp; } memset(a1, 0, LPC_HALFORDER*sizeof(float)); memset(a2, 0, LPC_HALFORDER*sizeof(float)); memset(b1, 0, LPC_HALFORDER*sizeof(float)); memset(b2, 0, LPC_HALFORDER*sizeof(float)); memset(a, 0, (LPC_HALFORDER+1)*sizeof(float)); memset(b, 0, (LPC_HALFORDER+1)*sizeof(float)); /* p[i] and q[i] compute cos(2*pi*omega_{2j}) and cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2. Note that for this code p[i] specifies the coefficients used in .Q_A(z) while q[i] specifies the coefficients used in .P_A(z) */ for (i = 0; i < LPC_HALFORDER; i++) { p[i] = cosf(TWO_PI*freq[2*i]); q[i] = cosf(TWO_PI*freq[2*i + 1]); } a[0] = 0.25f; b[0] = 0.25f; for (i = 0; i < LPC_HALFORDER; i++) { a[i + 1] = a[i] - 2*p[i]*a1[i] + a2[i]; b[i + 1] = b[i] - 2*q[i]*b1[i] + b2[i]; a2[i] = a1[i]; a1[i] = a[i]; b2[i] = b1[i]; b1[i] = b[i]; } for (j = 0; j < ILBC_LPC_FILTERORDER; j++) { if (j == 0) { a[0] = 0.25f; b[0] = -0.25f; } else { a[0] = b[0] = 0.0f; } for (i = 0; i < LPC_HALFORDER; i++) { a[i + 1] = a[i] - 2.0f*p[i]*a1[i] + a2[i]; b[i + 1] = b[i] - 2.0f*q[i]*b1[i] + b2[i]; a2[i] = a1[i]; a1[i] = a[i]; b2[i] = b1[i]; b1[i] = b[i]; } a_coef[j + 1] = 2.0f*(a[LPC_HALFORDER] + b[LPC_HALFORDER]); } a_coef[0] = 1.0f; }