/* * carl9170 firmware - used by the ar9170 wireless device * * Interface to the WLAN part of the chip * * Copyright (c) 2000-2005 ZyDAS Technology Corporation * Copyright (c) 2007-2009 Atheros Communications, Inc. * Copyright 2009 Johannes Berg * Copyright 2009-2011 Christian Lamparter * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "carl9170.h" #include "shared/phy.h" #include "hostif.h" #include "timer.h" #include "wl.h" #include "printf.h" #include "rf.h" #include "linux/ieee80211.h" #include "wol.h" static void wlan_txunstuck(unsigned int queue) { set_wlan_txq_dma_addr(queue, ((uint32_t) fw.wlan.tx_queue[queue].head) | 1); } #ifdef CONFIG_CARL9170FW_DMA_QUEUE_BUMP static void wlan_txupdate(unsigned int queue) { set_wlan_txq_dma_addr(queue, ((uint32_t) fw.wlan.tx_queue[queue].head)); } static void wlan_dma_bump(unsigned int qidx) { unsigned int offset = qidx; uint32_t status, trigger; status = get(AR9170_MAC_REG_DMA_STATUS) >> 12; trigger = get(AR9170_MAC_REG_DMA_TRIGGER) >> 12; while (offset != 0) { status >>= 4; trigger >>= 4; offset--; } status &= 0xf; trigger &= 0xf; if ((trigger == 0xa) && (status == 0x8)) { DBG("UNSTUCK"); wlan_txunstuck(qidx); } else { DBG("UPDATE"); wlan_txupdate(qidx); } } #endif /* CONFIG_CARL9170FW_DMA_QUEUE_BUMP */ #ifdef CONFIG_CARL9170FW_DEBUG static void wlan_dump_queue(unsigned int qidx) { struct dma_desc *desc; struct carl9170_tx_superframe *super; int entries = 0; __for_each_desc(desc, &fw.wlan.tx_queue[qidx]) { super = get_super(desc); DBG("%d: %p s:%x c:%x tl:%x ds:%x n:%p l:%p ", entries, desc, desc->status, desc->ctrl, desc->totalLen, desc->dataSize, desc->nextAddr, desc->lastAddr); DBG("c:%x tr:%d ri:%d l:%x m:%x p:%x fc:%x", super->s.cookie, super->s.cnt, super->s.rix, super->f.hdr.length, super->f.hdr.mac.set, (unsigned int) le32_to_cpu(super->f.hdr.phy.set), super->f.data.i3e.frame_control); entries++; } desc = get_wlan_txq_addr(qidx); DBG("Queue: %d: te:%d td:%d h:%p c:%p t:%p", qidx, entries, queue_len(&fw.wlan.tx_queue[qidx]), fw.wlan.tx_queue[qidx].head, desc, fw.wlan.tx_queue[qidx].terminator); DBG("HW: t:%x s:%x ac:%x c:%x", (unsigned int) get(AR9170_MAC_REG_DMA_TRIGGER), (unsigned int) get(AR9170_MAC_REG_DMA_STATUS), (unsigned int) get(AR9170_MAC_REG_AMPDU_COUNT), (unsigned int) get(AR9170_MAC_REG_DMA_TXQX_ADDR_CURR)); } #endif /* CONFIG_CARL9170FW_DEBUG */ static void wlan_send_buffered_tx_status(void) { unsigned int len; while (fw.wlan.tx_status_pending) { len = min((unsigned int)fw.wlan.tx_status_pending, CARL9170_RSP_TX_STATUS_NUM); len = min(len, CARL9170_TX_STATUS_NUM - fw.wlan.tx_status_head_idx); /* * rather than memcpy each individual request into a large buffer, * we _splice_ them all together. * * The only downside is however that we have to be careful around * the edges of the tx_status_cache. * * Note: * Each tx_status is about 2 bytes. However every command package * must have a size which is a multiple of 4. */ send_cmd_to_host((len * sizeof(struct carl9170_tx_status) + 3) & ~3, CARL9170_RSP_TXCOMP, len, (void *) &fw.wlan.tx_status_cache[fw.wlan.tx_status_head_idx]); fw.wlan.tx_status_pending -= len; fw.wlan.tx_status_head_idx += len; fw.wlan.tx_status_head_idx %= CARL9170_TX_STATUS_NUM; } } static struct carl9170_tx_status *wlan_get_tx_status_buffer(void) { struct carl9170_tx_status *tmp; tmp = &fw.wlan.tx_status_cache[fw.wlan.tx_status_tail_idx++]; fw.wlan.tx_status_tail_idx %= CARL9170_TX_STATUS_NUM; if (fw.wlan.tx_status_pending == CARL9170_TX_STATUS_NUM) wlan_send_buffered_tx_status(); fw.wlan.tx_status_pending++; return tmp; } /* generate _aggregated_ tx_status for the host */ void wlan_tx_complete(struct carl9170_tx_superframe *super, bool txs) { struct carl9170_tx_status *status; status = wlan_get_tx_status_buffer(); /* * The *unique* cookie and AC_ID is used by the driver for * frame lookup. */ status->cookie = super->s.cookie; status->queue = super->s.queue; super->s.cookie = 0; /* * This field holds the number of tries of the rate in * the rate index field (rix). */ status->rix = super->s.rix; status->tries = super->s.cnt; status->success = (txs) ? 1 : 0; } static bool wlan_tx_consume_retry(struct carl9170_tx_superframe *super) { /* check if this was the last possible retry with this rate */ if (unlikely(super->s.cnt >= super->s.ri[super->s.rix].tries)) { /* end of the road - indicate tx failure */ if (unlikely(super->s.rix == CARL9170_TX_MAX_RETRY_RATES)) return false; /* check if there are alternative rates available */ if (!super->s.rr[super->s.rix].set) return false; /* try next retry rate */ super->f.hdr.phy.set = super->s.rr[super->s.rix].set; /* finally - mark the old rate as USED */ super->s.rix++; /* update MAC flags */ super->f.hdr.mac.erp_prot = super->s.ri[super->s.rix].erp_prot; super->f.hdr.mac.ampdu = super->s.ri[super->s.rix].ampdu; /* reinitialize try counter */ super->s.cnt = 1; } else { /* just increase retry counter */ super->s.cnt++; } return true; } static inline u16 get_tid(struct ieee80211_hdr *hdr) { return (ieee80211_get_qos_ctl(hdr))[0] & IEEE80211_QOS_CTL_TID_MASK; } /* This function will only work on uint32_t-aligned pointers! */ static bool same_hdr(const void *_d0, const void *_d1) { const uint32_t *d0 = _d0; const uint32_t *d1 = _d1; /* BUG_ON((unsigned long)d0 & 3 || (unsigned long)d1 & 3)) */ return !((d0[0] ^ d1[0]) | /* FC + DU */ (d0[1] ^ d1[1]) | /* addr1 */ (d0[2] ^ d1[2]) | (d0[3] ^ d1[3]) | /* addr2 + addr3 */ (d0[4] ^ d1[4])); /* addr3 */ } static inline bool same_aggr(struct ieee80211_hdr *a, struct ieee80211_hdr *b) { return (get_tid(a) == get_tid(b)) || same_hdr(a, b); } static void wlan_tx_ampdu_reset(unsigned int qidx) { fw.wlan.ampdu_prev[qidx] = NULL; } static void wlan_tx_ampdu_end(unsigned int qidx) { struct carl9170_tx_superframe *ht_prev = fw.wlan.ampdu_prev[qidx]; if (ht_prev) ht_prev->f.hdr.mac.ba_end = 1; wlan_tx_ampdu_reset(qidx); } static void wlan_tx_ampdu(struct carl9170_tx_superframe *super) { unsigned int qidx = super->s.queue; struct carl9170_tx_superframe *ht_prev = fw.wlan.ampdu_prev[qidx]; if (super->f.hdr.mac.ampdu) { if (ht_prev && !same_aggr(&super->f.data.i3e, &ht_prev->f.data.i3e)) ht_prev->f.hdr.mac.ba_end = 1; else super->f.hdr.mac.ba_end = 0; fw.wlan.ampdu_prev[qidx] = super; } else { wlan_tx_ampdu_end(qidx); } } /* for all tries */ static void __wlan_tx(struct dma_desc *desc) { struct carl9170_tx_superframe *super = get_super(desc); if (unlikely(super->s.fill_in_tsf)) { struct ieee80211_mgmt *mgmt = (void *) &super->f.data.i3e; uint32_t *tsf = (uint32_t *) &mgmt->u.probe_resp.timestamp; /* * Truth be told: this is a hack. * * The *real* TSF is definitely going to be higher/older. * But this hardware emulation code is head and shoulders * above anything a driver can possibly do. * * (even, if it's got an accurate atomic clock source). */ read_tsf(tsf); } wlan_tx_ampdu(super); #ifdef CONFIG_CARL9170FW_DEBUG BUG_ON(fw.phy.psm.state != CARL9170_PSM_WAKE); #endif /* CONFIG_CARL9170FW_DEBUG */ /* insert desc into the right queue */ dma_put(&fw.wlan.tx_queue[super->s.queue], desc); } static void wlan_assign_seq(struct ieee80211_hdr *hdr, unsigned int vif) { hdr->seq_ctrl &= cpu_to_le16(~IEEE80211_SCTL_SEQ); hdr->seq_ctrl |= cpu_to_le16(fw.wlan.sequence[vif]); if (ieee80211_is_first_frag(hdr->seq_ctrl)) fw.wlan.sequence[vif] += 0x10; } /* prepares frame for the first transmission */ static void _wlan_tx(struct dma_desc *desc) { struct carl9170_tx_superframe *super = get_super(desc); if (unlikely(super->s.assign_seq)) wlan_assign_seq(&super->f.data.i3e, super->s.vif_id); if (unlikely(super->s.ampdu_commit_density)) { set(AR9170_MAC_REG_AMPDU_DENSITY, MOD_VAL(AR9170_MAC_AMPDU_DENSITY, get(AR9170_MAC_REG_AMPDU_DENSITY), super->s.ampdu_density)); } if (unlikely(super->s.ampdu_commit_factor)) { set(AR9170_MAC_REG_AMPDU_FACTOR, MOD_VAL(AR9170_MAC_AMPDU_FACTOR, get(AR9170_MAC_REG_AMPDU_FACTOR), 8 << super->s.ampdu_factor)); } } /* propagate transmission status back to the driver */ static bool wlan_tx_status(struct dma_queue *queue, struct dma_desc *desc) { struct carl9170_tx_superframe *super = get_super(desc); unsigned int qidx = super->s.queue; bool txfail = false, success; success = true; /* update hangcheck */ fw.wlan.last_super_num[qidx] = 0; /* * Note: * There could be a corner case when the TXFAIL is set * even though the frame was properly ACKed by the peer: * a BlockAckReq with the immediate policy will cause * the receiving peer to produce a BlockACK unfortunately * the MAC in this chip seems to be expecting a legacy * ACK and marks the BAR as failed! */ if (!!(desc->ctrl & AR9170_CTRL_FAIL)) { txfail = !!(desc->ctrl & AR9170_CTRL_TXFAIL); /* reset retry indicator flags */ desc->ctrl &= ~(AR9170_CTRL_TXFAIL | AR9170_CTRL_BAFAIL); /* * Note: wlan_tx_consume_retry will override the old * phy [CCK,OFDM, HT, BW20/40, MCS...] and mac vectors * [AMPDU,RTS/CTS,...] therefore be careful when they * are used. */ if (wlan_tx_consume_retry(super)) { /* * retry for simple and aggregated 802.11 frames. * * Note: We must not mess up the original frame * order. */ if (!super->f.hdr.mac.ampdu) { /* * 802.11 - 7.1.3.1.5. * set "Retry Field" for consecutive attempts * * Note: For AMPDU see: * 802.11n 9.9.1.6 "Retransmit Procedures" */ super->f.data.i3e.frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); } if (txfail) { /* Normal TX Failure */ /* demise descriptor ownership back to the hardware */ dma_rearm(desc); /* * And this will get the queue going again. * To understand why: you have to get the HW * specs... But sadly I never saw them. */ wlan_txunstuck(qidx); /* abort cycle - this is necessary due to HW design */ return false; } else { /* (HT-) BlockACK failure */ /* * Unlink the failed attempt and put it into * the retry queue. The caller routine must * be aware of this so the frames don't get lost. */ #ifndef CONFIG_CARL9170FW_DEBUG dma_unlink_head(queue); #else /* CONFIG_CARL9170FW_DEBUG */ BUG_ON(dma_unlink_head(queue) != desc); #endif /* CONFIG_CARL9170FW_DEBUG */ dma_put(&fw.wlan.tx_retry, desc); return true; } } else { /* out of frame attempts - discard frame */ success = false; } } #ifndef CONFIG_CARL9170FW_DEBUG dma_unlink_head(queue); #else /* CONFIG_CARL9170FW_DEBUG */ BUG_ON(dma_unlink_head(queue) != desc); #endif /* CONFIG_CARL9170FW_DEBUG */ if (txfail) { /* * Issue the queue bump, * We need to do this in case this was the frame's last * possible retry attempt and it unfortunately: it failed. */ wlan_txunstuck(qidx); } unhide_super(desc); if (unlikely(super == fw.wlan.fw_desc_data)) { fw.wlan.fw_desc = desc; fw.wlan.fw_desc_available = 1; if (fw.wlan.fw_desc_callback) fw.wlan.fw_desc_callback(super, success); return true; } #ifdef CONFIG_CARL9170FW_CAB_QUEUE if (unlikely(super->s.cab)) fw.wlan.cab_queue_len[super->s.vif_id]--; #endif /* CONFIG_CARL9170FW_CAB_QUEUE */ wlan_tx_complete(super, success); if (ieee80211_is_back_req(super->f.data.i3e.frame_control)) { fw.wlan.queued_bar--; } /* recycle freed descriptors */ dma_reclaim(&fw.pta.down_queue, desc); down_trigger(); return true; } static void handle_tx_completion(void) { struct dma_desc *desc; int i; for (i = AR9170_TXQ_SPECIAL; i >= AR9170_TXQ0; i--) { __while_desc_bits(desc, &fw.wlan.tx_queue[i], AR9170_OWN_BITS_SW) { if (!wlan_tx_status(&fw.wlan.tx_queue[i], desc)) { /* termination requested. */ break; } } wlan_tx_ampdu_reset(i); for_each_desc(desc, &fw.wlan.tx_retry) __wlan_tx(desc); wlan_tx_ampdu_end(i); if (!queue_empty(&fw.wlan.tx_queue[i])) wlan_trigger(BIT(i)); } } void __hot wlan_tx(struct dma_desc *desc) { struct carl9170_tx_superframe *super = DESC_PAYLOAD(desc); if (ieee80211_is_back_req(super->f.data.i3e.frame_control)) { fw.wlan.queued_bar++; } /* initialize rate control struct */ super->s.rix = 0; super->s.cnt = 1; hide_super(desc); #ifdef CONFIG_CARL9170FW_CAB_QUEUE if (unlikely(super->s.cab)) { fw.wlan.cab_queue_len[super->s.vif_id]++; dma_put(&fw.wlan.cab_queue[super->s.vif_id], desc); return; } #endif /* CONFIG_CARL9170FW_CAB_QUEUE */ _wlan_tx(desc); __wlan_tx(desc); wlan_trigger(BIT(super->s.queue)); } void wlan_tx_fw(struct carl9170_tx_superdesc *super, fw_desc_callback_t cb) { if (!fw.wlan.fw_desc_available) return; fw.wlan.fw_desc_available = 0; /* Format BlockAck */ fw.wlan.fw_desc->ctrl = AR9170_CTRL_FS_BIT | AR9170_CTRL_LS_BIT; fw.wlan.fw_desc->status = AR9170_OWN_BITS_SW; fw.wlan.fw_desc->totalLen = fw.wlan.fw_desc->dataSize = super->len; fw.wlan.fw_desc_data = fw.wlan.fw_desc->dataAddr = super; fw.wlan.fw_desc->nextAddr = fw.wlan.fw_desc->lastAddr = fw.wlan.fw_desc; fw.wlan.fw_desc_callback = cb; wlan_tx(fw.wlan.fw_desc); } static void wlan_send_buffered_ba(void) { struct carl9170_tx_ba_superframe *baf = &dma_mem.reserved.ba.ba; struct ieee80211_ba *ba = (struct ieee80211_ba *) &baf->f.ba; struct carl9170_bar_ctx *ctx; if (likely(!fw.wlan.queued_ba)) return; /* there's no point to continue when the ba_desc is not available. */ if (!fw.wlan.fw_desc_available) return; ctx = &fw.wlan.ba_cache[fw.wlan.ba_head_idx]; fw.wlan.ba_head_idx++; fw.wlan.ba_head_idx %= CONFIG_CARL9170FW_BACK_REQS_NUM; fw.wlan.queued_ba--; baf->s.len = sizeof(struct carl9170_tx_superdesc) + sizeof(struct ar9170_tx_hwdesc) + sizeof(struct ieee80211_ba); baf->s.ri[0].tries = 1; baf->s.cookie = 0; baf->s.queue = AR9170_TXQ_VO; baf->f.hdr.length = sizeof(struct ieee80211_ba) + FCS_LEN; baf->f.hdr.mac.no_ack = 1; baf->f.hdr.phy.modulation = 1; /* OFDM */ baf->f.hdr.phy.tx_power = 34; /* 17 dBm */ baf->f.hdr.phy.chains = 1; baf->f.hdr.phy.mcs = AR9170_TXRX_PHY_RATE_OFDM_6M; /* format outgoing BA */ ba->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK); ba->duration = cpu_to_le16(0); /* the BAR contains all necessary MACs. All we need is to swap them */ memcpy(ba->ra, ctx->ta, 6); memcpy(ba->ta, ctx->ra, 6); /* * Unfortunately, we cannot look into the hardware's scoreboard. * Therefore we have to proceed as described in 802.11n 9.10.7.5 * and send a null BlockAck. */ memset(ba->bitmap, 0x0, sizeof(ba->bitmap)); /* * Both, the original firmare and ath9k set the NO ACK flag in * the BA Ack Policy subfield. */ ba->control = ctx->control | cpu_to_le16(1); ba->start_seq_num = ctx->start_seq_num; wlan_tx_fw(&baf->s, NULL); } static struct carl9170_bar_ctx *wlan_get_bar_cache_buffer(void) { struct carl9170_bar_ctx *tmp; tmp = &fw.wlan.ba_cache[fw.wlan.ba_tail_idx]; fw.wlan.ba_tail_idx++; fw.wlan.ba_tail_idx %= CONFIG_CARL9170FW_BACK_REQS_NUM; if (fw.wlan.queued_ba < CONFIG_CARL9170FW_BACK_REQS_NUM) fw.wlan.queued_ba++; return tmp; } static void handle_bar(struct dma_desc *desc __unused, struct ieee80211_hdr *hdr, unsigned int len, unsigned int mac_err) { struct ieee80211_bar *bar; struct carl9170_bar_ctx *ctx; if (unlikely(mac_err)) { /* * This check does a number of things: * 1. checks if the frame is in good nick * 2. checks if the RA (MAC) matches */ return ; } if (unlikely(len < (sizeof(struct ieee80211_bar) + FCS_LEN))) { /* * Sneaky, corrupted BARs... but not with us! */ return ; } bar = (void *) hdr; if ((bar->control & cpu_to_le16(IEEE80211_BAR_CTRL_MULTI_TID)) || !(bar->control & cpu_to_le16(IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA))) { /* not implemented yet */ return ; } ctx = wlan_get_bar_cache_buffer(); memcpy(ctx->ra, bar->ra, 6); memcpy(ctx->ta, bar->ta, 6); ctx->control = bar->control; ctx->start_seq_num = bar->start_seq_num; } static void wlan_check_rx_overrun(void) { uint32_t overruns, total; fw.tally.rx_total += total = get(AR9170_MAC_REG_RX_TOTAL); fw.tally.rx_overrun += overruns = get(AR9170_MAC_REG_RX_OVERRUN); if (unlikely(overruns)) { if (overruns == total) { DBG("RX Overrun"); fw.wlan.mac_reset++; } wlan_trigger(AR9170_DMA_TRIGGER_RXQ); } } static unsigned int wlan_rx_filter(struct dma_desc *desc) { struct ieee80211_hdr *hdr; unsigned int data_len; unsigned int rx_filter; unsigned int mac_err; data_len = ar9170_get_rx_mpdu_len(desc); mac_err = ar9170_get_rx_macstatus_error(desc); #define AR9170_RX_ERROR_BAD (AR9170_RX_ERROR_FCS | AR9170_RX_ERROR_PLCP) if (unlikely(data_len < (4 + 6 + FCS_LEN) || desc->totalLen > CONFIG_CARL9170FW_RX_FRAME_LEN) || mac_err & AR9170_RX_ERROR_BAD) { /* * This frame is too damaged to do anything * useful with it. */ return CARL9170_RX_FILTER_BAD; } rx_filter = 0; if (mac_err & AR9170_RX_ERROR_WRONG_RA) rx_filter |= CARL9170_RX_FILTER_OTHER_RA; if (mac_err & AR9170_RX_ERROR_DECRYPT) rx_filter |= CARL9170_RX_FILTER_DECRY_FAIL; hdr = ar9170_get_rx_i3e(desc); if (likely(ieee80211_is_data(hdr->frame_control))) { rx_filter |= CARL9170_RX_FILTER_DATA; } else if (ieee80211_is_ctl(hdr->frame_control)) { switch (le16_to_cpu(hdr->frame_control) & IEEE80211_FCTL_STYPE) { case IEEE80211_STYPE_BACK_REQ: handle_bar(desc, hdr, data_len, mac_err); rx_filter |= CARL9170_RX_FILTER_CTL_BACKR; break; case IEEE80211_STYPE_PSPOLL: rx_filter |= CARL9170_RX_FILTER_CTL_PSPOLL; break; case IEEE80211_STYPE_BACK: if (fw.wlan.queued_bar) { /* * Don't filter block acks when the application * has queued BARs. This is because the firmware * can't do the accouting and the application * has to sort out if the BA belongs to any BARs. */ break; } /* otherwise fall through */ default: rx_filter |= CARL9170_RX_FILTER_CTL_OTHER; break; } } else { /* ieee80211_is_mgmt */ rx_filter |= CARL9170_RX_FILTER_MGMT; } if (unlikely(fw.suspend_mode == CARL9170_HOST_SUSPENDED)) { wol_rx(rx_filter, hdr, min(data_len, (unsigned int)AR9170_BLOCK_SIZE)); } #undef AR9170_RX_ERROR_BAD return rx_filter; } static void handle_rx(void) { struct dma_desc *desc; for_each_desc_not_bits(desc, &fw.wlan.rx_queue, AR9170_OWN_BITS_HW) { if (!(wlan_rx_filter(desc) & fw.wlan.rx_filter)) { dma_put(&fw.pta.up_queue, desc); up_trigger(); } else { dma_reclaim(&fw.wlan.rx_queue, desc); wlan_trigger(AR9170_DMA_TRIGGER_RXQ); } } } #ifdef CONFIG_CARL9170FW_CAB_QUEUE void wlan_cab_flush_queue(const unsigned int vif) { struct dma_queue *cab_queue = &fw.wlan.cab_queue[vif]; struct dma_desc *desc; /* move queued frames into the main tx queues */ for_each_desc(desc, cab_queue) { struct carl9170_tx_superframe *super = get_super(desc); if (!queue_empty(cab_queue)) { /* * Set MOREDATA flag for all, * but the last queued frame. * see: 802.11-2007 11.2.1.5 f) * * This is actually the reason to why * we need to prevent the reentry. */ super->f.data.i3e.frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); } else { super->f.data.i3e.frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA); } /* ready to roll! */ _wlan_tx(desc); __wlan_tx(desc); wlan_trigger(BIT(super->s.queue)); } } static uint8_t *beacon_find_ie(uint8_t ie, void *addr, const unsigned int len) { struct ieee80211_mgmt *mgmt = addr; uint8_t *pos, *end; pos = mgmt->u.beacon.variable; end = (uint8_t *) ((unsigned long)mgmt + (len - FCS_LEN)); while (pos < end) { if (pos + 2 + pos[1] > end) return NULL; if (pos[0] == ie) return pos; pos += pos[1] + 2; } return NULL; } void wlan_modify_beacon(const unsigned int vif, const unsigned int addr, const unsigned int len) { uint8_t *_ie; struct ieee80211_tim_ie *ie; _ie = beacon_find_ie(WLAN_EID_TIM, (void *)addr, len); if (likely(_ie)) { ie = (struct ieee80211_tim_ie *) &_ie[2]; if (!queue_empty(&fw.wlan.cab_queue[vif]) && (ie->dtim_count == 0)) { /* schedule DTIM transfer */ fw.wlan.cab_flush_trigger[vif] = CARL9170_CAB_TRIGGER_ARMED; } else if ((fw.wlan.cab_queue_len[vif] == 0) && (fw.wlan.cab_flush_trigger[vif])) { /* undo all chances to the beacon structure */ ie->bitmap_ctrl &= ~0x1; fw.wlan.cab_flush_trigger[vif] = CARL9170_CAB_TRIGGER_EMPTY; } /* Triggered by CARL9170_CAB_TRIGGER_ARMED || CARL9170_CAB_TRIGGER_DEFER */ if (fw.wlan.cab_flush_trigger[vif]) { /* Set the almighty Multicast Traffic Indication Bit. */ ie->bitmap_ctrl |= 0x1; } } /* * Ideally, the sequence number should be assigned by the TX arbiter * hardware. But AFAIK that's not possible, so we have to go for the * next best thing and write it into the beacon fifo during the open * beacon update window. */ wlan_assign_seq((struct ieee80211_hdr *)addr, vif); } static void wlan_send_buffered_cab(void) { unsigned int i; for (i = 0; i < CARL9170_INTF_NUM; i++) { if (unlikely(fw.wlan.cab_flush_trigger[i] == CARL9170_CAB_TRIGGER_ARMED)) { /* * This is hardcoded into carl9170usb driver. * * The driver must set the PRETBTT event to beacon_interval - * CARL9170_PRETBTT_KUS (usually 6) Kus. * * But still, we can only do so much about 802.11-2007 9.3.2.1 & * 11.2.1.6. Let's hope the current solution is adequate enough. */ if (is_after_msecs(fw.wlan.cab_flush_time, (CARL9170_TBTT_DELTA))) { wlan_cab_flush_queue(i); /* * This prevents the code from sending new BC/MC frames * which were queued after the previous buffered traffic * has been sent out... They will have to wait until the * next DTIM beacon comes along. */ fw.wlan.cab_flush_trigger[i] = CARL9170_CAB_TRIGGER_DEFER; } } } } #endif /* CONFIG_CARL9170FW_CAB_QUEUE */ static void handle_beacon_config(void) { uint32_t bcn_count; bcn_count = get(AR9170_MAC_REG_BCN_COUNT); send_cmd_to_host(4, CARL9170_RSP_BEACON_CONFIG, 0x00, (uint8_t *) &bcn_count); } static void handle_pretbtt(void) { #ifdef CONFIG_CARL9170FW_CAB_QUEUE fw.wlan.cab_flush_time = get_clock_counter(); #endif /* CONFIG_CARL9170FW_CAB_QUEUE */ #ifdef CONFIG_CARL9170FW_RADIO_FUNCTIONS rf_psm(); send_cmd_to_host(4, CARL9170_RSP_PRETBTT, 0x00, (uint8_t *) &fw.phy.psm.state); #endif /* CONFIG_CARL9170FW_RADIO_FUNCTIONS */ } static void handle_atim(void) { send_cmd_to_host(0, CARL9170_RSP_ATIM, 0x00, NULL); } #ifdef CONFIG_CARL9170FW_DEBUG static void handle_qos(void) { /* * What is the QoS Bit used for? * Is it only an indicator for TXOP & Burst, or * should we do something here? */ } static void handle_radar(void) { send_cmd_to_host(0, CARL9170_RSP_RADAR, 0x00, NULL); } #endif /* CONFIG_CARL9170FW_DEBUG */ static void wlan_janitor(void) { #ifdef CONFIG_CARL9170FW_CAB_QUEUE wlan_send_buffered_cab(); #endif /* CONFIG_CARL9170FW_CAB_QUEUE */ wlan_send_buffered_tx_status(); wlan_send_buffered_ba(); wol_janitor(); } void handle_wlan(void) { uint32_t intr; intr = get(AR9170_MAC_REG_INT_CTRL); /* ACK Interrupt */ set(AR9170_MAC_REG_INT_CTRL, intr); #define HANDLER(intr, flag, func) \ do { \ if ((intr & flag) != 0) { \ func(); \ } \ } while (0) intr |= fw.wlan.soft_int; fw.wlan.soft_int = 0; HANDLER(intr, AR9170_MAC_INT_PRETBTT, handle_pretbtt); HANDLER(intr, AR9170_MAC_INT_ATIM, handle_atim); HANDLER(intr, AR9170_MAC_INT_RXC, handle_rx); HANDLER(intr, (AR9170_MAC_INT_TXC | AR9170_MAC_INT_RETRY_FAIL), handle_tx_completion); #ifdef CONFIG_CARL9170FW_DEBUG HANDLER(intr, AR9170_MAC_INT_QOS, handle_qos); HANDLER(intr, AR9170_MAC_INT_RADAR, handle_radar); #endif /* CONFIG_CARL9170FW_DEBUG */ HANDLER(intr, AR9170_MAC_INT_CFG_BCN, handle_beacon_config); if (unlikely(intr)) DBG("Unhandled Interrupt %x\n", (unsigned int) intr); wlan_janitor(); #undef HANDLER } enum { CARL9170FW_TX_MAC_BUMP = 4, CARL9170FW_TX_MAC_DEBUG = 6, CARL9170FW_TX_MAC_RESET = 7, }; static void wlan_check_hang(void) { struct dma_desc *desc; int i; for (i = AR9170_TXQ_SPECIAL; i >= AR9170_TXQ0; i--) { if (queue_empty(&fw.wlan.tx_queue[i])) { /* Nothing to do here... move along */ continue; } /* fetch the current DMA queue position */ desc = (struct dma_desc *)get_wlan_txq_addr(i); /* Stuck frame detection */ if (unlikely(DESC_PAYLOAD(desc) == fw.wlan.last_super[i])) { fw.wlan.last_super_num[i]++; if (unlikely(fw.wlan.last_super_num[i] >= CARL9170FW_TX_MAC_RESET)) { /* * schedule MAC reset (aka OFF/ON => dead) * * This will almost certainly kill * the device for good, but it's the * recommended thing to do... */ fw.wlan.mac_reset++; } #ifdef CONFIG_CARL9170FW_DEBUG if (unlikely(fw.wlan.last_super_num[i] >= CARL9170FW_TX_MAC_DEBUG)) { /* * Sigh, the queue is almost certainly * dead. Dump the queue content to the * user, maybe we find out why it got * so stuck. */ wlan_dump_queue(i); } #endif /* CONFIG_CARL9170FW_DEBUG */ #ifdef CONFIG_CARL9170FW_DMA_QUEUE_BUMP if (unlikely(fw.wlan.last_super_num[i] >= CARL9170FW_TX_MAC_BUMP)) { /* * Hrrm, bump the queue a bit. * maybe this will get it going again. */ wlan_dma_bump(i); wlan_trigger(BIT(i)); } #endif /* CONFIG_CARL9170FW_DMA_QUEUE_BUMP */ } else { /* Nothing stuck */ fw.wlan.last_super[i] = DESC_PAYLOAD(desc); fw.wlan.last_super_num[i] = 0; } } } #ifdef CONFIG_CARL9170FW_FW_MAC_RESET /* * NB: Resetting the MAC is a two-edged sword. * On most occasions, it does what it is supposed to do. * But there is a chance that this will make it * even worse and the radio dies silently. */ static void wlan_mac_reset(void) { uint32_t val; uint32_t agg_wait_counter; uint32_t agg_density; uint32_t bcn_start_addr; uint32_t rctl, rcth; uint32_t cam_mode; uint32_t ack_power; uint32_t rts_cts_tpc; uint32_t rts_cts_rate; int i; #ifdef CONFIG_CARL9170FW_RADIO_FUNCTIONS uint32_t rx_BB; #endif /* CONFIG_CARL9170FW_RADIO_FUNCTIONS */ #ifdef CONFIG_CARL9170FW_NOISY_MAC_RESET INFO("MAC RESET"); #endif /* CONFIG_CARL9170FW_NOISY_MAC_RESET */ /* Save aggregation parameters */ agg_wait_counter = get(AR9170_MAC_REG_AMPDU_FACTOR); agg_density = get(AR9170_MAC_REG_AMPDU_DENSITY); bcn_start_addr = get(AR9170_MAC_REG_BCN_ADDR); cam_mode = get(AR9170_MAC_REG_CAM_MODE); rctl = get(AR9170_MAC_REG_CAM_ROLL_CALL_TBL_L); rcth = get(AR9170_MAC_REG_CAM_ROLL_CALL_TBL_H); ack_power = get(AR9170_MAC_REG_ACK_TPC); rts_cts_tpc = get(AR9170_MAC_REG_RTS_CTS_TPC); rts_cts_rate = get(AR9170_MAC_REG_RTS_CTS_RATE); #ifdef CONFIG_CARL9170FW_RADIO_FUNCTIONS /* 0x1c8960 write only */ rx_BB = get(AR9170_PHY_REG_SWITCH_CHAIN_0); #endif /* CONFIG_CARL9170FW_RADIO_FUNCTIONS */ /* TX/RX must be stopped by now */ val = get(AR9170_MAC_REG_POWER_STATE_CTRL); val |= AR9170_MAC_POWER_STATE_CTRL_RESET; /* * Manipulate CCA threshold to stop transmission * * set(AR9170_PHY_REG_CCA_THRESHOLD, 0x300); */ /* * check Rx state in 0(idle) 9(disable) * * chState = (get(AR9170_MAC_REG_MISC_684) >> 16) & 0xf; * while( (chState != 0) && (chState != 9)) { * chState = (get(AR9170_MAC_REG_MISC_684) >> 16) & 0xf; * } */ set(AR9170_MAC_REG_POWER_STATE_CTRL, val); delay(2); /* Restore aggregation parameters */ set(AR9170_MAC_REG_AMPDU_FACTOR, agg_wait_counter); set(AR9170_MAC_REG_AMPDU_DENSITY, agg_density); set(AR9170_MAC_REG_BCN_ADDR, bcn_start_addr); set(AR9170_MAC_REG_CAM_MODE, cam_mode); set(AR9170_MAC_REG_CAM_ROLL_CALL_TBL_L, rctl); set(AR9170_MAC_REG_CAM_ROLL_CALL_TBL_H, rcth); set(AR9170_MAC_REG_RTS_CTS_TPC, rts_cts_tpc); set(AR9170_MAC_REG_ACK_TPC, ack_power); set(AR9170_MAC_REG_RTS_CTS_RATE, rts_cts_rate); #ifdef CONFIG_CARL9170FW_RADIO_FUNCTIONS set(AR9170_PHY_REG_SWITCH_CHAIN_2, rx_BB); #endif /* CONFIG_CARL9170FW_RADIO_FUNCTIONS */ /* * Manipulate CCA threshold to resume transmission * * set(AR9170_PHY_REG_CCA_THRESHOLD, 0x0); */ val = AR9170_DMA_TRIGGER_RXQ; /* Reinitialize all WLAN TX DMA queues. */ for (i = AR9170_TXQ_SPECIAL; i >= AR9170_TXQ0; i--) { struct dma_desc *iter; __for_each_desc_bits(iter, &fw.wlan.tx_queue[i], AR9170_OWN_BITS_SW); /* kill the stuck frame */ if (!is_terminator(&fw.wlan.tx_queue[i], iter) && fw.wlan.last_super_num[i] >= CARL9170FW_TX_MAC_RESET && fw.wlan.last_super[i] == DESC_PAYLOAD(iter)) { struct carl9170_tx_superframe *super = get_super(iter); iter->status = AR9170_OWN_BITS_SW; /* * Mark the frame as failed. * The BAFAIL flag allows the frame to sail through * wlan_tx_status without much "unstuck" trouble. */ iter->ctrl &= ~(AR9170_CTRL_FAIL); iter->ctrl |= AR9170_CTRL_BAFAIL; super->s.cnt = CARL9170_TX_MAX_RATE_TRIES; super->s.rix = CARL9170_TX_MAX_RETRY_RATES; fw.wlan.last_super_num[i] = 0; fw.wlan.last_super[i] = NULL; iter = iter->lastAddr->nextAddr; } set_wlan_txq_dma_addr(i, (uint32_t) iter); if (!is_terminator(&fw.wlan.tx_queue[i], iter)) val |= BIT(i); DBG("Q:%d l:%d h:%p t:%p cu:%p it:%p ct:%x st:%x\n", i, queue_len(&fw.wlan.tx_queue[i]), fw.wlan.tx_queue[i].head, fw.wlan.tx_queue[i].terminator, get_wlan_txq_addr(i), iter, iter->ctrl, iter->status); } fw.wlan.soft_int |= AR9170_MAC_INT_RXC | AR9170_MAC_INT_TXC | AR9170_MAC_INT_RETRY_FAIL; set(AR9170_MAC_REG_DMA_RXQ_ADDR, (uint32_t) fw.wlan.rx_queue.head); wlan_trigger(val); } #else static void wlan_mac_reset(void) { /* The driver takes care of reinitializing the device */ BUG("MAC RESET"); } #endif /* CONFIG_CARL9170FW_FW_MAC_RESET */ void __cold wlan_timer(void) { unsigned int cached_mac_reset; cached_mac_reset = fw.wlan.mac_reset; /* TX Queue Hang check */ wlan_check_hang(); /* RX Overrun check */ wlan_check_rx_overrun(); if (unlikely(fw.wlan.mac_reset >= CARL9170_MAC_RESET_RESET)) { wlan_mac_reset(); fw.wlan.mac_reset = CARL9170_MAC_RESET_OFF; } else { if (fw.wlan.mac_reset && cached_mac_reset == fw.wlan.mac_reset) fw.wlan.mac_reset--; } }