/* * Copyright (C) 2017 Netronome Systems, Inc. * * This software is dual licensed under the GNU General License Version 2, * June 1991 as shown in the file COPYING in the top-level directory of this * source tree or the BSD 2-Clause License provided below. You have the * option to license this software under the complete terms of either license. * * The BSD 2-Clause License: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * 1. Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include "cmsg.h" #include "main.h" #include "../nfp_net_repr.h" #include "../nfp_net.h" #define NFP_FL_MAX_ROUTES 32 /** * struct nfp_tun_active_tuns - periodic message of active tunnels * @seq: sequence number of the message * @count: number of tunnels report in message * @flags: options part of the request * @tun_info.ipv4: dest IPv4 address of active route * @tun_info.egress_port: port the encapsulated packet egressed * @tun_info.extra: reserved for future use * @tun_info: tunnels that have sent traffic in reported period */ struct nfp_tun_active_tuns { __be32 seq; __be32 count; __be32 flags; struct route_ip_info { __be32 ipv4; __be32 egress_port; __be32 extra[2]; } tun_info[]; }; /** * struct nfp_tun_neigh - neighbour/route entry on the NFP * @dst_ipv4: destination IPv4 address * @src_ipv4: source IPv4 address * @dst_addr: destination MAC address * @src_addr: source MAC address * @port_id: NFP port to output packet on - associated with source IPv4 */ struct nfp_tun_neigh { __be32 dst_ipv4; __be32 src_ipv4; u8 dst_addr[ETH_ALEN]; u8 src_addr[ETH_ALEN]; __be32 port_id; }; /** * struct nfp_tun_req_route_ipv4 - NFP requests a route/neighbour lookup * @ingress_port: ingress port of packet that signalled request * @ipv4_addr: destination ipv4 address for route * @reserved: reserved for future use */ struct nfp_tun_req_route_ipv4 { __be32 ingress_port; __be32 ipv4_addr; __be32 reserved[2]; }; /** * struct nfp_ipv4_route_entry - routes that are offloaded to the NFP * @ipv4_addr: destination of route * @list: list pointer */ struct nfp_ipv4_route_entry { __be32 ipv4_addr; struct list_head list; }; #define NFP_FL_IPV4_ADDRS_MAX 32 /** * struct nfp_tun_ipv4_addr - set the IP address list on the NFP * @count: number of IPs populated in the array * @ipv4_addr: array of IPV4_ADDRS_MAX 32 bit IPv4 addresses */ struct nfp_tun_ipv4_addr { __be32 count; __be32 ipv4_addr[NFP_FL_IPV4_ADDRS_MAX]; }; /** * struct nfp_ipv4_addr_entry - cached IPv4 addresses * @ipv4_addr: IP address * @ref_count: number of rules currently using this IP * @list: list pointer */ struct nfp_ipv4_addr_entry { __be32 ipv4_addr; int ref_count; struct list_head list; }; /** * struct nfp_tun_mac_addr - configure MAC address of tunnel EP on NFP * @reserved: reserved for future use * @count: number of MAC addresses in the message * @addresses.index: index of MAC address in the lookup table * @addresses.addr: interface MAC address * @addresses: series of MACs to offload */ struct nfp_tun_mac_addr { __be16 reserved; __be16 count; struct index_mac_addr { __be16 index; u8 addr[ETH_ALEN]; } addresses[]; }; /** * struct nfp_tun_mac_offload_entry - list of MACs to offload * @index: index of MAC address for offloading * @addr: interface MAC address * @list: list pointer */ struct nfp_tun_mac_offload_entry { __be16 index; u8 addr[ETH_ALEN]; struct list_head list; }; #define NFP_MAX_MAC_INDEX 0xff /** * struct nfp_tun_mac_non_nfp_idx - converts non NFP netdev ifindex to 8-bit id * @ifindex: netdev ifindex of the device * @index: index of netdevs mac on NFP * @list: list pointer */ struct nfp_tun_mac_non_nfp_idx { int ifindex; u8 index; struct list_head list; }; void nfp_tunnel_keep_alive(struct nfp_app *app, struct sk_buff *skb) { struct nfp_tun_active_tuns *payload; struct net_device *netdev; int count, i, pay_len; struct neighbour *n; __be32 ipv4_addr; u32 port; payload = nfp_flower_cmsg_get_data(skb); count = be32_to_cpu(payload->count); if (count > NFP_FL_MAX_ROUTES) { nfp_flower_cmsg_warn(app, "Tunnel keep-alive request exceeds max routes.\n"); return; } pay_len = nfp_flower_cmsg_get_data_len(skb); if (pay_len != sizeof(struct nfp_tun_active_tuns) + sizeof(struct route_ip_info) * count) { nfp_flower_cmsg_warn(app, "Corruption in tunnel keep-alive message.\n"); return; } rcu_read_lock(); for (i = 0; i < count; i++) { ipv4_addr = payload->tun_info[i].ipv4; port = be32_to_cpu(payload->tun_info[i].egress_port); netdev = nfp_app_repr_get(app, port); if (!netdev) continue; n = neigh_lookup(&arp_tbl, &ipv4_addr, netdev); if (!n) continue; /* Update the used timestamp of neighbour */ neigh_event_send(n, NULL); neigh_release(n); } rcu_read_unlock(); } static bool nfp_tun_is_netdev_to_offload(struct net_device *netdev) { if (!netdev->rtnl_link_ops) return false; if (!strcmp(netdev->rtnl_link_ops->kind, "openvswitch")) return true; if (!strcmp(netdev->rtnl_link_ops->kind, "vxlan")) return true; return false; } static int nfp_flower_xmit_tun_conf(struct nfp_app *app, u8 mtype, u16 plen, void *pdata, gfp_t flag) { struct sk_buff *skb; unsigned char *msg; skb = nfp_flower_cmsg_alloc(app, plen, mtype, flag); if (!skb) return -ENOMEM; msg = nfp_flower_cmsg_get_data(skb); memcpy(msg, pdata, nfp_flower_cmsg_get_data_len(skb)); nfp_ctrl_tx(app->ctrl, skb); return 0; } static bool nfp_tun_has_route(struct nfp_app *app, __be32 ipv4_addr) { struct nfp_flower_priv *priv = app->priv; struct nfp_ipv4_route_entry *entry; struct list_head *ptr, *storage; spin_lock_bh(&priv->nfp_neigh_off_lock); list_for_each_safe(ptr, storage, &priv->nfp_neigh_off_list) { entry = list_entry(ptr, struct nfp_ipv4_route_entry, list); if (entry->ipv4_addr == ipv4_addr) { spin_unlock_bh(&priv->nfp_neigh_off_lock); return true; } } spin_unlock_bh(&priv->nfp_neigh_off_lock); return false; } static void nfp_tun_add_route_to_cache(struct nfp_app *app, __be32 ipv4_addr) { struct nfp_flower_priv *priv = app->priv; struct nfp_ipv4_route_entry *entry; struct list_head *ptr, *storage; spin_lock_bh(&priv->nfp_neigh_off_lock); list_for_each_safe(ptr, storage, &priv->nfp_neigh_off_list) { entry = list_entry(ptr, struct nfp_ipv4_route_entry, list); if (entry->ipv4_addr == ipv4_addr) { spin_unlock_bh(&priv->nfp_neigh_off_lock); return; } } entry = kmalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) { spin_unlock_bh(&priv->nfp_neigh_off_lock); nfp_flower_cmsg_warn(app, "Mem error when storing new route.\n"); return; } entry->ipv4_addr = ipv4_addr; list_add_tail(&entry->list, &priv->nfp_neigh_off_list); spin_unlock_bh(&priv->nfp_neigh_off_lock); } static void nfp_tun_del_route_from_cache(struct nfp_app *app, __be32 ipv4_addr) { struct nfp_flower_priv *priv = app->priv; struct nfp_ipv4_route_entry *entry; struct list_head *ptr, *storage; spin_lock_bh(&priv->nfp_neigh_off_lock); list_for_each_safe(ptr, storage, &priv->nfp_neigh_off_list) { entry = list_entry(ptr, struct nfp_ipv4_route_entry, list); if (entry->ipv4_addr == ipv4_addr) { list_del(&entry->list); kfree(entry); break; } } spin_unlock_bh(&priv->nfp_neigh_off_lock); } static void nfp_tun_write_neigh(struct net_device *netdev, struct nfp_app *app, struct flowi4 *flow, struct neighbour *neigh, gfp_t flag) { struct nfp_tun_neigh payload; /* Only offload representor IPv4s for now. */ if (!nfp_netdev_is_nfp_repr(netdev)) return; memset(&payload, 0, sizeof(struct nfp_tun_neigh)); payload.dst_ipv4 = flow->daddr; /* If entry has expired send dst IP with all other fields 0. */ if (!(neigh->nud_state & NUD_VALID) || neigh->dead) { nfp_tun_del_route_from_cache(app, payload.dst_ipv4); /* Trigger ARP to verify invalid neighbour state. */ neigh_event_send(neigh, NULL); goto send_msg; } /* Have a valid neighbour so populate rest of entry. */ payload.src_ipv4 = flow->saddr; ether_addr_copy(payload.src_addr, netdev->dev_addr); neigh_ha_snapshot(payload.dst_addr, neigh, netdev); payload.port_id = cpu_to_be32(nfp_repr_get_port_id(netdev)); /* Add destination of new route to NFP cache. */ nfp_tun_add_route_to_cache(app, payload.dst_ipv4); send_msg: nfp_flower_xmit_tun_conf(app, NFP_FLOWER_CMSG_TYPE_TUN_NEIGH, sizeof(struct nfp_tun_neigh), (unsigned char *)&payload, flag); } static int nfp_tun_neigh_event_handler(struct notifier_block *nb, unsigned long event, void *ptr) { struct nfp_flower_priv *app_priv; struct netevent_redirect *redir; struct flowi4 flow = {}; struct neighbour *n; struct nfp_app *app; struct rtable *rt; int err; switch (event) { case NETEVENT_REDIRECT: redir = (struct netevent_redirect *)ptr; n = redir->neigh; break; case NETEVENT_NEIGH_UPDATE: n = (struct neighbour *)ptr; break; default: return NOTIFY_DONE; } flow.daddr = *(__be32 *)n->primary_key; /* Only concerned with route changes for representors. */ if (!nfp_netdev_is_nfp_repr(n->dev)) return NOTIFY_DONE; app_priv = container_of(nb, struct nfp_flower_priv, nfp_tun_neigh_nb); app = app_priv->app; /* Only concerned with changes to routes already added to NFP. */ if (!nfp_tun_has_route(app, flow.daddr)) return NOTIFY_DONE; #if IS_ENABLED(CONFIG_INET) /* Do a route lookup to populate flow data. */ rt = ip_route_output_key(dev_net(n->dev), &flow); err = PTR_ERR_OR_ZERO(rt); if (err) return NOTIFY_DONE; ip_rt_put(rt); #else return NOTIFY_DONE; #endif flow.flowi4_proto = IPPROTO_UDP; nfp_tun_write_neigh(n->dev, app, &flow, n, GFP_ATOMIC); return NOTIFY_OK; } void nfp_tunnel_request_route(struct nfp_app *app, struct sk_buff *skb) { struct nfp_tun_req_route_ipv4 *payload; struct net_device *netdev; struct flowi4 flow = {}; struct neighbour *n; struct rtable *rt; int err; payload = nfp_flower_cmsg_get_data(skb); rcu_read_lock(); netdev = nfp_app_repr_get(app, be32_to_cpu(payload->ingress_port)); if (!netdev) goto fail_rcu_unlock; flow.daddr = payload->ipv4_addr; flow.flowi4_proto = IPPROTO_UDP; #if IS_ENABLED(CONFIG_INET) /* Do a route lookup on same namespace as ingress port. */ rt = ip_route_output_key(dev_net(netdev), &flow); err = PTR_ERR_OR_ZERO(rt); if (err) goto fail_rcu_unlock; #else goto fail_rcu_unlock; #endif /* Get the neighbour entry for the lookup */ n = dst_neigh_lookup(&rt->dst, &flow.daddr); ip_rt_put(rt); if (!n) goto fail_rcu_unlock; nfp_tun_write_neigh(n->dev, app, &flow, n, GFP_ATOMIC); neigh_release(n); rcu_read_unlock(); return; fail_rcu_unlock: rcu_read_unlock(); nfp_flower_cmsg_warn(app, "Requested route not found.\n"); } static void nfp_tun_write_ipv4_list(struct nfp_app *app) { struct nfp_flower_priv *priv = app->priv; struct nfp_ipv4_addr_entry *entry; struct nfp_tun_ipv4_addr payload; struct list_head *ptr, *storage; int count; memset(&payload, 0, sizeof(struct nfp_tun_ipv4_addr)); mutex_lock(&priv->nfp_ipv4_off_lock); count = 0; list_for_each_safe(ptr, storage, &priv->nfp_ipv4_off_list) { if (count >= NFP_FL_IPV4_ADDRS_MAX) { mutex_unlock(&priv->nfp_ipv4_off_lock); nfp_flower_cmsg_warn(app, "IPv4 offload exceeds limit.\n"); return; } entry = list_entry(ptr, struct nfp_ipv4_addr_entry, list); payload.ipv4_addr[count++] = entry->ipv4_addr; } payload.count = cpu_to_be32(count); mutex_unlock(&priv->nfp_ipv4_off_lock); nfp_flower_xmit_tun_conf(app, NFP_FLOWER_CMSG_TYPE_TUN_IPS, sizeof(struct nfp_tun_ipv4_addr), &payload, GFP_KERNEL); } void nfp_tunnel_add_ipv4_off(struct nfp_app *app, __be32 ipv4) { struct nfp_flower_priv *priv = app->priv; struct nfp_ipv4_addr_entry *entry; struct list_head *ptr, *storage; mutex_lock(&priv->nfp_ipv4_off_lock); list_for_each_safe(ptr, storage, &priv->nfp_ipv4_off_list) { entry = list_entry(ptr, struct nfp_ipv4_addr_entry, list); if (entry->ipv4_addr == ipv4) { entry->ref_count++; mutex_unlock(&priv->nfp_ipv4_off_lock); return; } } entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) { mutex_unlock(&priv->nfp_ipv4_off_lock); nfp_flower_cmsg_warn(app, "Mem error when offloading IP address.\n"); return; } entry->ipv4_addr = ipv4; entry->ref_count = 1; list_add_tail(&entry->list, &priv->nfp_ipv4_off_list); mutex_unlock(&priv->nfp_ipv4_off_lock); nfp_tun_write_ipv4_list(app); } void nfp_tunnel_del_ipv4_off(struct nfp_app *app, __be32 ipv4) { struct nfp_flower_priv *priv = app->priv; struct nfp_ipv4_addr_entry *entry; struct list_head *ptr, *storage; mutex_lock(&priv->nfp_ipv4_off_lock); list_for_each_safe(ptr, storage, &priv->nfp_ipv4_off_list) { entry = list_entry(ptr, struct nfp_ipv4_addr_entry, list); if (entry->ipv4_addr == ipv4) { entry->ref_count--; if (!entry->ref_count) { list_del(&entry->list); kfree(entry); } break; } } mutex_unlock(&priv->nfp_ipv4_off_lock); nfp_tun_write_ipv4_list(app); } void nfp_tunnel_write_macs(struct nfp_app *app) { struct nfp_flower_priv *priv = app->priv; struct nfp_tun_mac_offload_entry *entry; struct nfp_tun_mac_addr *payload; struct list_head *ptr, *storage; int mac_count, err, pay_size; mutex_lock(&priv->nfp_mac_off_lock); if (!priv->nfp_mac_off_count) { mutex_unlock(&priv->nfp_mac_off_lock); return; } pay_size = sizeof(struct nfp_tun_mac_addr) + sizeof(struct index_mac_addr) * priv->nfp_mac_off_count; payload = kzalloc(pay_size, GFP_KERNEL); if (!payload) { mutex_unlock(&priv->nfp_mac_off_lock); return; } payload->count = cpu_to_be16(priv->nfp_mac_off_count); mac_count = 0; list_for_each_safe(ptr, storage, &priv->nfp_mac_off_list) { entry = list_entry(ptr, struct nfp_tun_mac_offload_entry, list); payload->addresses[mac_count].index = entry->index; ether_addr_copy(payload->addresses[mac_count].addr, entry->addr); mac_count++; } err = nfp_flower_xmit_tun_conf(app, NFP_FLOWER_CMSG_TYPE_TUN_MAC, pay_size, payload, GFP_KERNEL); kfree(payload); if (err) { mutex_unlock(&priv->nfp_mac_off_lock); /* Write failed so retain list for future retry. */ return; } /* If list was successfully offloaded, flush it. */ list_for_each_safe(ptr, storage, &priv->nfp_mac_off_list) { entry = list_entry(ptr, struct nfp_tun_mac_offload_entry, list); list_del(&entry->list); kfree(entry); } priv->nfp_mac_off_count = 0; mutex_unlock(&priv->nfp_mac_off_lock); } static int nfp_tun_get_mac_idx(struct nfp_app *app, int ifindex) { struct nfp_flower_priv *priv = app->priv; struct nfp_tun_mac_non_nfp_idx *entry; struct list_head *ptr, *storage; int idx; mutex_lock(&priv->nfp_mac_index_lock); list_for_each_safe(ptr, storage, &priv->nfp_mac_index_list) { entry = list_entry(ptr, struct nfp_tun_mac_non_nfp_idx, list); if (entry->ifindex == ifindex) { idx = entry->index; mutex_unlock(&priv->nfp_mac_index_lock); return idx; } } idx = ida_simple_get(&priv->nfp_mac_off_ids, 0, NFP_MAX_MAC_INDEX, GFP_KERNEL); if (idx < 0) { mutex_unlock(&priv->nfp_mac_index_lock); return idx; } entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) { mutex_unlock(&priv->nfp_mac_index_lock); return -ENOMEM; } entry->ifindex = ifindex; entry->index = idx; list_add_tail(&entry->list, &priv->nfp_mac_index_list); mutex_unlock(&priv->nfp_mac_index_lock); return idx; } static void nfp_tun_del_mac_idx(struct nfp_app *app, int ifindex) { struct nfp_flower_priv *priv = app->priv; struct nfp_tun_mac_non_nfp_idx *entry; struct list_head *ptr, *storage; mutex_lock(&priv->nfp_mac_index_lock); list_for_each_safe(ptr, storage, &priv->nfp_mac_index_list) { entry = list_entry(ptr, struct nfp_tun_mac_non_nfp_idx, list); if (entry->ifindex == ifindex) { ida_simple_remove(&priv->nfp_mac_off_ids, entry->index); list_del(&entry->list); kfree(entry); break; } } mutex_unlock(&priv->nfp_mac_index_lock); } static void nfp_tun_add_to_mac_offload_list(struct net_device *netdev, struct nfp_app *app) { struct nfp_flower_priv *priv = app->priv; struct nfp_tun_mac_offload_entry *entry; u16 nfp_mac_idx; int port = 0; /* Check if MAC should be offloaded. */ if (!is_valid_ether_addr(netdev->dev_addr)) return; if (nfp_netdev_is_nfp_repr(netdev)) port = nfp_repr_get_port_id(netdev); else if (!nfp_tun_is_netdev_to_offload(netdev)) return; entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) { nfp_flower_cmsg_warn(app, "Mem fail when offloading MAC.\n"); return; } if (FIELD_GET(NFP_FLOWER_CMSG_PORT_TYPE, port) == NFP_FLOWER_CMSG_PORT_TYPE_PHYS_PORT) { nfp_mac_idx = port << 8 | NFP_FLOWER_CMSG_PORT_TYPE_PHYS_PORT; } else if (FIELD_GET(NFP_FLOWER_CMSG_PORT_TYPE, port) == NFP_FLOWER_CMSG_PORT_TYPE_PCIE_PORT) { port = FIELD_GET(NFP_FLOWER_CMSG_PORT_VNIC, port); nfp_mac_idx = port << 8 | NFP_FLOWER_CMSG_PORT_TYPE_PCIE_PORT; } else { /* Must assign our own unique 8-bit index. */ int idx = nfp_tun_get_mac_idx(app, netdev->ifindex); if (idx < 0) { nfp_flower_cmsg_warn(app, "Can't assign non-repr MAC index.\n"); kfree(entry); return; } nfp_mac_idx = idx << 8 | NFP_FLOWER_CMSG_PORT_TYPE_OTHER_PORT; } entry->index = cpu_to_be16(nfp_mac_idx); ether_addr_copy(entry->addr, netdev->dev_addr); mutex_lock(&priv->nfp_mac_off_lock); priv->nfp_mac_off_count++; list_add_tail(&entry->list, &priv->nfp_mac_off_list); mutex_unlock(&priv->nfp_mac_off_lock); } static int nfp_tun_mac_event_handler(struct notifier_block *nb, unsigned long event, void *ptr) { struct nfp_flower_priv *app_priv; struct net_device *netdev; struct nfp_app *app; if (event == NETDEV_DOWN || event == NETDEV_UNREGISTER) { app_priv = container_of(nb, struct nfp_flower_priv, nfp_tun_mac_nb); app = app_priv->app; netdev = netdev_notifier_info_to_dev(ptr); /* If non-nfp netdev then free its offload index. */ if (nfp_tun_is_netdev_to_offload(netdev)) nfp_tun_del_mac_idx(app, netdev->ifindex); } else if (event == NETDEV_UP || event == NETDEV_CHANGEADDR || event == NETDEV_REGISTER) { app_priv = container_of(nb, struct nfp_flower_priv, nfp_tun_mac_nb); app = app_priv->app; netdev = netdev_notifier_info_to_dev(ptr); nfp_tun_add_to_mac_offload_list(netdev, app); /* Force a list write to keep NFP up to date. */ nfp_tunnel_write_macs(app); } return NOTIFY_OK; } int nfp_tunnel_config_start(struct nfp_app *app) { struct nfp_flower_priv *priv = app->priv; struct net_device *netdev; int err; /* Initialise priv data for MAC offloading. */ priv->nfp_mac_off_count = 0; mutex_init(&priv->nfp_mac_off_lock); INIT_LIST_HEAD(&priv->nfp_mac_off_list); priv->nfp_tun_mac_nb.notifier_call = nfp_tun_mac_event_handler; mutex_init(&priv->nfp_mac_index_lock); INIT_LIST_HEAD(&priv->nfp_mac_index_list); ida_init(&priv->nfp_mac_off_ids); /* Initialise priv data for IPv4 offloading. */ mutex_init(&priv->nfp_ipv4_off_lock); INIT_LIST_HEAD(&priv->nfp_ipv4_off_list); /* Initialise priv data for neighbour offloading. */ spin_lock_init(&priv->nfp_neigh_off_lock); INIT_LIST_HEAD(&priv->nfp_neigh_off_list); priv->nfp_tun_neigh_nb.notifier_call = nfp_tun_neigh_event_handler; err = register_netdevice_notifier(&priv->nfp_tun_mac_nb); if (err) goto err_free_mac_ida; err = register_netevent_notifier(&priv->nfp_tun_neigh_nb); if (err) goto err_unreg_mac_nb; /* Parse netdevs already registered for MACs that need offloaded. */ rtnl_lock(); for_each_netdev(&init_net, netdev) nfp_tun_add_to_mac_offload_list(netdev, app); rtnl_unlock(); return 0; err_unreg_mac_nb: unregister_netdevice_notifier(&priv->nfp_tun_mac_nb); err_free_mac_ida: ida_destroy(&priv->nfp_mac_off_ids); return err; } void nfp_tunnel_config_stop(struct nfp_app *app) { struct nfp_tun_mac_offload_entry *mac_entry; struct nfp_flower_priv *priv = app->priv; struct nfp_ipv4_route_entry *route_entry; struct nfp_tun_mac_non_nfp_idx *mac_idx; struct nfp_ipv4_addr_entry *ip_entry; struct list_head *ptr, *storage; unregister_netdevice_notifier(&priv->nfp_tun_mac_nb); unregister_netevent_notifier(&priv->nfp_tun_neigh_nb); /* Free any memory that may be occupied by MAC list. */ list_for_each_safe(ptr, storage, &priv->nfp_mac_off_list) { mac_entry = list_entry(ptr, struct nfp_tun_mac_offload_entry, list); list_del(&mac_entry->list); kfree(mac_entry); } /* Free any memory that may be occupied by MAC index list. */ list_for_each_safe(ptr, storage, &priv->nfp_mac_index_list) { mac_idx = list_entry(ptr, struct nfp_tun_mac_non_nfp_idx, list); list_del(&mac_idx->list); kfree(mac_idx); } ida_destroy(&priv->nfp_mac_off_ids); /* Free any memory that may be occupied by ipv4 list. */ list_for_each_safe(ptr, storage, &priv->nfp_ipv4_off_list) { ip_entry = list_entry(ptr, struct nfp_ipv4_addr_entry, list); list_del(&ip_entry->list); kfree(ip_entry); } /* Free any memory that may be occupied by the route list. */ list_for_each_safe(ptr, storage, &priv->nfp_neigh_off_list) { route_entry = list_entry(ptr, struct nfp_ipv4_route_entry, list); list_del(&route_entry->list); kfree(route_entry); } }