/* * Copyright © 2017 Fabian Bieler * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** * @file property-bindings.c: Access GL state in ARB_vertex_program. * * Set constant parameter bindings with the OpenGL API and access it in * ARB vertex programs. * * Matrix state is not tested. */ #include "piglit-util-gl.h" PIGLIT_GL_TEST_CONFIG_BEGIN config.supports_gl_compat_version = 13; config.window_visual = PIGLIT_GL_VISUAL_RGB; config.khr_no_error_support = PIGLIT_NO_ERRORS; PIGLIT_GL_TEST_CONFIG_END #ifdef _WIN32 #define SRAND(x) srand(x) #define DRAND() ((float)rand() / RAND_MAX) #else #define SRAND(x) srand48(x) #define DRAND() drand48() #endif /* * This vertex program compares test_param against expected using epsilon * as tolerance. On match result.color is set to green, red otherwise. */ static const char *vp_template = "!!ARBvp1.0\n" "PARAM epsilon = 0.00390625;\n" "PARAM expected = {%f, %f, %f, %f};\n" "PARAM test_param = %s;\n" "TEMP temp;\n" "SUB temp, expected, test_param;\n" "ABS temp, temp;\n" "SLT temp, temp, epsilon;\n" "DP4 temp, temp, temp;\n" "SLT temp.x, temp.x, 4;\n" "SGE temp.y, temp.y, 4;\n" "SWZ result.color, temp, x, y, 0, 1;\n" "MOV result.position, vertex.position;\n" "END"; /** * Check that the constant parameter \name is equal to \val. * * Since we also test for derived state involving floating point computation * don't test for strict equality but rather only check if the parameter's * components are within and epsilon of their expected values. */ static bool check_prg_param_(const float *val, const char *name) { char *vp_text; const float green[3] = {0.0, 1.0, 0.0}; asprintf(&vp_text, vp_template, val[0], val[1], val[2], val[3], name); GLuint prog = piglit_compile_program(GL_VERTEX_PROGRAM_ARB, vp_text); free(vp_text); glBindProgramARB(GL_VERTEX_PROGRAM_ARB, prog); glClear(GL_COLOR_BUFFER_BIT); piglit_draw_rect(-1, -1, 2, 2); glDeleteProgramsARB(1, &prog); if (piglit_probe_pixel_rgb_silent(piglit_width / 2, piglit_height / 2, green, NULL)) return true; printf("Failed parameter: '%s'.\n", name); return false; } /** * printf-like version of function above. */ static bool check_prg_param(const float *val, const char *format, ...) PRINTFLIKE(2, 3); static bool check_prg_param(const float *val, const char *format, ...) { char *name; va_list ap; va_start(ap, format); vasprintf(&name, format, ap); va_end(ap); const bool r = check_prg_param_(val, name); free(name); return r; } static void normalize(float *v) { const float norm = sqrtf(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); for (int i = 0; i < 3; ++i) v[i] /= norm; } static void random_vec4(float *v) { for (int i = 0; i < 4; ++i) v[i] = DRAND(); } /** * Get name fragment used in ARB program for GLenum \pname. */ static const char * enum2program(const GLenum pname) { switch (pname) { case GL_EMISSION: return "emission"; case GL_AMBIENT: return "ambient"; case GL_DIFFUSE: return "diffuse"; case GL_SPECULAR: return "specular"; case GL_POSITION: return "position"; case GL_S: return "s"; case GL_T: return "t"; case GL_R: return "r"; case GL_Q: return "q"; default: assert(!"unexpected state enum"); return ""; } } enum piglit_result piglit_display(void) { bool pass = true; float val[4]; /* Material Property Bindings */ for (int s = 0; s < 2; ++s) { for (int p = 0; p < 4; ++p) { const GLenum pname[] = {GL_EMISSION, GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR}; random_vec4(val); glMaterialfv(GL_FRONT + s, pname[p], val); pass = check_prg_param(val, "state.material.%s.%s", s ? "back" : "front", enum2program(pname[p])) && pass; /* The front material bindings are also accessible * without ".front.". */ if (s == 0) pass = check_prg_param( val, "state.material.%s", enum2program(pname[p])) && pass; } val[0] = DRAND(); val[1] = 0; val[2] = 0; val[3] = 1; glMaterialf(GL_FRONT + s, GL_SHININESS, val[0]); pass = check_prg_param(val, "state.material.%s.shininess", s ? "back" : "front") && pass; if (s == 0) pass = check_prg_param(val, "state.material.shininess") && pass; } /* Light Property Bindings */ int max_lights; glGetIntegerv(GL_MAX_LIGHTS, &max_lights); for (int l = 0; l < max_lights; ++l) { for (int p = 0; p < 4; ++p) { const GLenum pname[] = {GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR, GL_POSITION}; random_vec4(val); glLightfv(GL_LIGHT0 + l, pname[p], val); pass = check_prg_param(val, "state.light[%d].%s", l, enum2program(pname[p])) && pass; } random_vec4(val); glLightf(GL_LIGHT0 + l, GL_CONSTANT_ATTENUATION, val[0]); glLightf(GL_LIGHT0 + l, GL_LINEAR_ATTENUATION, val[1]); glLightf(GL_LIGHT0 + l, GL_QUADRATIC_ATTENUATION, val[2]); glLightf(GL_LIGHT0 + l, GL_SPOT_EXPONENT, val[3]); pass = check_prg_param(val, "state.light[%d].attenuation", l) && pass; random_vec4(val); glLightfv(GL_LIGHT0 + l, GL_SPOT_DIRECTION, val); glLightf(GL_LIGHT0 + l, GL_SPOT_CUTOFF, val[3]); val[3] = cosf(val[3] / 180 * M_PI); pass = check_prg_param(val, "state.light[%d].spot.direction", l) && pass; for (int c = 0; c < 3; ++c) val[c] = DRAND(); val[3] = 1; glLightfv(GL_LIGHT0 + l, GL_POSITION, val); normalize(val); val[2] += 1; normalize(val); pass = check_prg_param(val, "state.light[%d].half", l) && pass; } random_vec4(val); glLightModelfv(GL_LIGHT_MODEL_AMBIENT, val); pass = check_prg_param(val, "state.lightmodel.ambient") && pass; for (int s = 0; s < 2; ++s) { float scene_color[4]; for (int c = 0; c < 4; ++c) scene_color[c] = val[c] = DRAND(); glMaterialfv(GL_FRONT + s, GL_AMBIENT, val); for (int c = 0; c < 4; ++c) scene_color[c] *= val[c] = DRAND(); glLightModelfv(GL_LIGHT_MODEL_AMBIENT, val); for (int c = 0; c < 4; ++c) scene_color[c] += val[c] = DRAND(); glMaterialfv(GL_FRONT + s, GL_EMISSION, val); /* Page 63 (77 of the PDF) of the OpenGL 2.0 spec says: * * "The value of A produced by lighting is the alpha * value associated with d_{cm}." * * I'm not sure if this applies to the scene color, but both * Mesa and the NVIDIA driver do this. */ random_vec4(val); glMaterialfv(GL_FRONT + s, GL_DIFFUSE, val); scene_color[3] = val[3]; pass = check_prg_param(scene_color, "state.lightmodel.%s.scenecolor", s ? "back" : "front") && pass; if (s == 0) pass = check_prg_param( scene_color, "state.lightmodel.scenecolor") && pass; } for (int s = 0; s < 2; ++s) { for (int l = 0; l < max_lights; ++l) { const GLenum pname[] = {GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR}; for (int p = 0; p < 3; ++p) { float light_product[4]; for (int c = 0; c < 4; ++c) light_product[c] = val[c] = DRAND(); glLightfv(GL_LIGHT0 + l, pname[p], val); for (int c = 0; c < 4; ++c) light_product[c] *= val[c] = DRAND(); glMaterialfv(GL_FRONT + s, pname[p], val); /* XXX: I have no Idea where the spec says the * alpha value of the light product is the * material's alpha value, but both Mesa and * the NVIDIA driver do this. */ light_product[3] = val[3]; pass = check_prg_param( light_product, "state.lightprod[%d].%s.%s", l, s ? "back" : "front", enum2program(pname[p])) && pass; if (s == 0) pass = check_prg_param( light_product, "state.lightprod[%d]." "%s", l, enum2program( pname[p])) && pass; } } } /* Texture Coordinate Generation Property Bindings */ int max_texture_coords; glGetIntegerv(GL_MAX_TEXTURE_COORDS, &max_texture_coords); for (int t = 0; t < max_texture_coords; ++t) { const GLenum coord[] = {GL_S, GL_T, GL_R, GL_Q}; glActiveTexture(GL_TEXTURE0 + t); for (int co = 0; co < 4; ++co) { const GLenum plane[] = {GL_EYE_PLANE, GL_OBJECT_PLANE}; const char *plane_name[] = {"eye", "object"}; for (int pl = 0; pl < 2; ++pl) { random_vec4(val); glTexGenfv(coord[co], plane[pl], val); pass = check_prg_param( val, "state.texgen[%d].%s.%s", t, plane_name[pl], enum2program(coord[co])) && pass; if (t == 0) pass = check_prg_param( val, "state.texgen.%s.%s", plane_name[pl], enum2program( coord[co])) && pass; } } } /* Fog Property Bindings */ random_vec4(val); glFogfv(GL_FOG_COLOR, val); pass = check_prg_param(val, "state.fog.color") && pass; random_vec4(val); glFogf(GL_FOG_DENSITY, val[0]); glFogf(GL_FOG_START, val[1]); glFogf(GL_FOG_END, val[2]); val[3] = 1 / (val[2] - val[1]); pass = check_prg_param(val, "state.fog.params") && pass; /* Clip Plane Property Bindings */ int max_clip_planes; glGetIntegerv(GL_MAX_CLIP_PLANES, &max_clip_planes); for (int cp = 0; cp < max_clip_planes; ++cp) { double vald[4]; for (int c = 0; c < 4; ++c) vald[c] = val[c] = DRAND(); glClipPlane(GL_CLIP_PLANE0 + cp, vald); pass = check_prg_param(val, "state.clip[%d].plane", cp) && pass; } /* Point Property Bindings */ random_vec4(val); glPointSize(val[0]); glPointParameterf(GL_POINT_SIZE_MIN, val[1]); glPointParameterf(GL_POINT_SIZE_MAX, val[2]); glPointParameterf(GL_POINT_FADE_THRESHOLD_SIZE, val[3]); pass = check_prg_param(val, "state.point.size") && pass; random_vec4(val); val[3] = 1; glPointParameterfv(GL_POINT_DISTANCE_ATTENUATION, val); pass = check_prg_param(&val[0], "state.point.attenuation") && pass; return pass ? PIGLIT_PASS : PIGLIT_FAIL; } void piglit_init(int argc, char **argv) { piglit_require_extension("GL_ARB_vertex_program"); glEnable(GL_VERTEX_PROGRAM_ARB); SRAND(17); }