/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file end-primitive.c * * Verify functionality of the geometry shader EndPrimitive() function. * * This test checks that EndPrimitive() works properly for the max * vertex count specified on the command line. * * The test operates by sending three POINT primitives down the * pipeline. The geometry shader converts each POINT primitive into a * triangle_strip containing the requested number of vertices. * EndPrimitive() is called after every third vertex, so the resulting * image consists of discrete triangles. The triangles are arranged * into a spiral pattern so that the maximum geometry shader output * vertex count can be accommodated without making the triangles too * small. * * Each of the 3 geometry shader invocations calls EndPrimitive() at * different times (the first invocation calls it prior to vertices 0, * 3, 6, 9, etc., the second invocation prior to vertices 1, 4, 7, 10, * etc., and the third invocation prior to vertices 2, 5, 8, 11, * etc.). The colors of the triangles are red for the first geometry * shader invocation, green for the second, and blue for the third. * So the resulting image should show the entire triangle strip with * colors sequencing in red, green, blue order. * * Colors are communicated from the geometry shader to the fragment * shader by adjusting the value of gl_Position.z. This allows us to * avoid taking up an extra varying slot to communicate color (which * might reduce the number of vertices we can test, due to * GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS). * * The test image is drawn twice, once in the manner described above * (the test pattern), and once without using geometry shaders (the * reference pattern). The test and reference pattern are then * compared. * * The image is drawn with a blend equation of GL_MAX, so that if any * call to EndPrimitive() fails to work, the result will be visible, * even if a subsequent geometry shader invocation draws over the same * part of the image. */ #include "piglit-util-gl.h" #define PATTERN_SIZE 256 PIGLIT_GL_TEST_CONFIG_BEGIN config.supports_gl_compat_version = 32; config.supports_gl_core_version = 32; config.window_width = 2*PATTERN_SIZE; config.window_height = PATTERN_SIZE; config.window_visual = PIGLIT_GL_VISUAL_DOUBLE | PIGLIT_GL_VISUAL_RGB; config.khr_no_error_support = PIGLIT_NO_ERRORS; PIGLIT_GL_TEST_CONFIG_END static GLuint prog_ref, prog_test; static int num_vertices; /** * Function to compute the spiral pattern. The distance between * adjacent vertices returned by this function is approximately * constant, so the resulting triangles will be approximately equal in * size. */ static const char *spiral_text = "#version 150\n" "\n" "uniform int num_vertices;\n" "\n" "vec2 spiral(int vertex_id)\n" "{\n" " float pi = acos(-1.0);\n" " float radial_spacing = 1.5;\n" " float spiral_spacing = 0.5;\n" " float a = 4.0*pi*spiral_spacing/radial_spacing;\n" " float b = radial_spacing/(2*pi);\n" " float theta = sqrt(a*float(vertex_id + 1));\n" " float r = b*theta;\n" " if (vertex_id % 2 == 1) r += 1.0;\n" " float max_r = b*sqrt(a*float(num_vertices)) + 1.0;\n" " r /= max_r;\n" " vec2 tmp = r*vec2(cos(theta), sin(theta));\n" " // ensure reasonably aligned vertices\n" " return floor(tmp * 2048.0f) / 2048.0f;\n" "}\n"; /** * Vertex shader for drawing the test pattern. The incoming vertex ID * is passed down into the geometry shader, so that it can tell which * invocation it is. */ static const char *vs_test_text = "#version 150\n" "\n" "out int end_prim_offset;\n" "\n" "void main()\n" "{\n" " end_prim_offset = gl_VertexID;\n" "}\n"; /** * Geometry shader for drawing the test pattern. */ static const char *gs_test_text = "#version 150\n" "\n" "vec2 spiral(int vertex_id);\n" "uniform int num_vertices;\n" "in int end_prim_offset[];\n" "\n" "void main()\n" "{\n" " int i = 0;\n" " while (true) {\n" " if (i % 3 == end_prim_offset[0])\n" " EndPrimitive();\n" " if (i == num_vertices)\n" " break;\n" " gl_Position = vec4(spiral(i++), end_prim_offset[0]/4.0, 1.0);\n" " EmitVertex();\n" " }\n" "}\n"; /** * Printf template for the geometry shader layout. %d will be filled * in with the number of vertices requested on the command line. */ static const char *gs_layout_template = "#version 150\n" "\n" "layout(points) in;\n" "layout(triangle_strip, max_vertices = %d) out;\n"; /** * Fragment shader for drawing both the test and reference patterns. */ static const char *fs_text = "#version 150\n" "\n" "void main()\n" "{\n" " int end_prim_offset = int(round((gl_FragCoord.z - 0.5) * 8.0));\n" " const vec4 colors[3] = vec4[3](\n" " vec4(1.0, 0.0, 0.0, 1.0),\n" " vec4(0.0, 1.0, 0.0, 1.0),\n" " vec4(0.0, 0.0, 1.0, 1.0));\n" " gl_FragColor = colors[end_prim_offset];\n" "}\n"; /** * Vertex shader for drawing the reference pattern. gl_VertexID takes * the place of the variable i in the geometry shader. */ static const char *vs_ref_text = "#version 150\n" "\n" "vec2 spiral(int vertex_id);\n" "uniform int end_prim_offset;\n" "\n" "void main()\n" "{\n" " gl_Position = vec4(spiral(gl_VertexID), end_prim_offset/4.0,\n" " 1.0);\n" "}\n"; static void print_usage_and_exit(const char *prog_name) { printf("Usage: %s \n" " where is the number of vertices to test, or\n" " 0 to test the maximum possible number of vertices.\n", prog_name); piglit_report_result(PIGLIT_FAIL); } void piglit_init(int argc, char **argv) { GLuint vs_spiral, gs_spiral, vs_ref_main, vs_test_main, gs_test_main, gs_layout, fs_main, vao, element_buf; GLint max_gs_out_vertices, max_gs_out_components; int max_testable_vertices; char *text, *endptr; /* parse args */ if (argc != 2) print_usage_and_exit(argv[0]); endptr = NULL; num_vertices = strtol(argv[1], &endptr, 0); if (endptr != argv[1] + strlen(argv[1])) print_usage_and_exit(argv[0]); /* Figure out the maximum number of vertices we can test. */ glGetIntegerv(GL_MAX_GEOMETRY_OUTPUT_VERTICES, &max_gs_out_vertices); glGetIntegerv(GL_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS, &max_gs_out_components); if (!piglit_check_gl_error(GL_NO_ERROR)) piglit_report_result(PIGLIT_FAIL); max_testable_vertices = MIN2(max_gs_out_vertices, max_gs_out_components / 4); /* If num_vertices == 0, test the maximum possible number of * vertices. Otherwise ensure that the requested number is * supported by the implementation. */ if (num_vertices == 0) num_vertices = max_testable_vertices; else if (num_vertices > max_testable_vertices) { printf("Can't test more than %d vertices\n", max_testable_vertices); piglit_report_result(PIGLIT_SKIP); } /* Compile shaders */ vs_spiral = piglit_compile_shader_text(GL_VERTEX_SHADER, spiral_text); gs_spiral = piglit_compile_shader_text(GL_GEOMETRY_SHADER, spiral_text); vs_ref_main = piglit_compile_shader_text(GL_VERTEX_SHADER, vs_ref_text); vs_test_main = piglit_compile_shader_text(GL_VERTEX_SHADER, vs_test_text); gs_test_main = piglit_compile_shader_text(GL_GEOMETRY_SHADER, gs_test_text); (void)!asprintf(&text, gs_layout_template, num_vertices); gs_layout = piglit_compile_shader_text(GL_GEOMETRY_SHADER, text); free(text); fs_main = piglit_compile_shader_text(GL_FRAGMENT_SHADER, fs_text); prog_ref = glCreateProgram(); glAttachShader(prog_ref, vs_ref_main); glAttachShader(prog_ref, vs_spiral); glAttachShader(prog_ref, fs_main); glLinkProgram(prog_ref); if (!piglit_link_check_status(prog_ref)) piglit_report_result(PIGLIT_FAIL); prog_test = glCreateProgram(); glAttachShader(prog_test, vs_test_main); glAttachShader(prog_test, gs_test_main); glAttachShader(prog_test, gs_spiral); glAttachShader(prog_test, gs_layout); glAttachShader(prog_test, fs_main); glLinkProgram(prog_test); if (!piglit_link_check_status(prog_test)) piglit_report_result(PIGLIT_FAIL); glDeleteShader(vs_spiral); glDeleteShader(gs_spiral); glDeleteShader(vs_ref_main); glDeleteShader(vs_test_main); glDeleteShader(gs_test_main); glDeleteShader(gs_layout); glDeleteShader(fs_main); /* Various other GL objects needed by the test */ glGenVertexArrays(1, &vao); glBindVertexArray(vao); glGenBuffers(1, &element_buf); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, element_buf); if (!piglit_check_gl_error(GL_NO_ERROR)) piglit_report_result(PIGLIT_FAIL); } /** * Simulate the action of the 3 geometry shader invocations by making * 3 glDrawElements() calls. Primitive restart is used to simulate * the action of EndPrimitive(). */ static void draw_ref_pattern() { int i, vertex_count, end_prim_offset; glUseProgram(prog_ref); glUniform1i(glGetUniformLocation(prog_ref, "num_vertices"), num_vertices); glEnable(GL_PRIMITIVE_RESTART); glPrimitiveRestartIndex(0xffffffff); for (end_prim_offset = 0; end_prim_offset < 3; end_prim_offset++) { /* Note: this over-allocates the buffer somewhat. The * actual amount of buffer space we need is a complex * formula involving num_vertices and end_prim_offset, * and it's not worth computing precisely. */ GLuint *index_buffer = malloc(2 * sizeof(GLuint) * num_vertices); i = vertex_count = 0; while (true) { if (i % 3 == end_prim_offset) index_buffer[vertex_count++] = 0xffffffff; if (i == num_vertices) break; index_buffer[vertex_count++] = i++; } glUniform1i(glGetUniformLocation(prog_ref, "end_prim_offset"), end_prim_offset); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(GLuint) * vertex_count, index_buffer, GL_STATIC_DRAW); free(index_buffer); glDrawElements(GL_TRIANGLE_STRIP, vertex_count, GL_UNSIGNED_INT, NULL); } glDisable(GL_PRIMITIVE_RESTART); } static void draw_test_pattern() { glUseProgram(prog_test); glUniform1i(glGetUniformLocation(prog_test, "num_vertices"), num_vertices); glDrawArrays(GL_POINTS, 0, 3); } enum piglit_result piglit_display(void) { bool pass = true; glEnable(GL_BLEND); glBlendEquation(GL_MAX); glClear(GL_COLOR_BUFFER_BIT); /* Left half of the window is the test pattern */ glViewport(0, 0, PATTERN_SIZE, PATTERN_SIZE); draw_test_pattern(); /* Right half of the window is the reference image */ glViewport(PATTERN_SIZE, 0, PATTERN_SIZE, PATTERN_SIZE); draw_ref_pattern(); if (!piglit_check_gl_error(GL_NO_ERROR)) pass = false; /* Compare window halves */ pass = piglit_probe_rect_halves_equal_rgba(0, 0, 2*PATTERN_SIZE, PATTERN_SIZE) && pass; piglit_present_results(); return pass ? PIGLIT_PASS : PIGLIT_FAIL; }