/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file primitive-types.c * * Verify that the geometry shader is invoked the proper number of * times, and input vertices are delivered in the proper order, for * all input primitive types. * * This test uses a simple geometry shader that copies the gl_VertexID * + 1 from each of its inputs to an output array, and then captures * the result using transform feedback (gl_VertexID + 1 is used * because this corresponds to the 1-based numbering used in the * OpenGL spec: see section 2.6.1 (Primitive Types) of the GL 3.2 core * spec). The resulting data is checked in C to make sure it matches * the expected sequence of vertices. * * As an incidental side effect, this test verifies that the * implementation assigns the correct input array size for each input * primitive type (since geometry shader compilation would fail if it * didn't). */ #include "piglit-util-gl.h" PIGLIT_GL_TEST_CONFIG_BEGIN config.supports_gl_compat_version = 32; config.supports_gl_core_version = 32; config.khr_no_error_support = PIGLIT_NO_ERRORS; PIGLIT_GL_TEST_CONFIG_END #define MAX_OUTPUT_VERTICES 24 static const char *vs_text = "#version 150\n" "\n" "out int vertex_id;\n" "\n" "void main()\n" "{\n" " vertex_id = gl_VertexID;\n" "}\n"; static const char *gs_template = "#version 150\n" "#define INPUT_LAYOUT %s\n" "#define VERTICES_PER_PRIM %d\n" "layout(INPUT_LAYOUT) in;\n" "layout(points, max_vertices = VERTICES_PER_PRIM) out;\n" "\n" "in int vertex_id[VERTICES_PER_PRIM];\n" "out int vertex_out[VERTICES_PER_PRIM];\n" "\n" "void main()\n" "{\n" " for (int i = 0; i < VERTICES_PER_PRIM; i++) {\n" " vertex_out[i] = vertex_id[i] + 1;\n" " }\n" " EmitVertex();\n" "}\n"; static const char *varyings[] = { "vertex_out[0]", "vertex_out[1]", "vertex_out[2]", "vertex_out[3]", "vertex_out[4]", "vertex_out[5]", }; struct test_vector { /** Number of vertices to send down the pipeline */ unsigned num_input_vertices; /** Number of GS invocations expected */ unsigned expected_gs_invocations; /** * Vertices that each GS invocation is expected to see. */ GLint expected_results[MAX_OUTPUT_VERTICES]; }; static const struct test_vector points_tests[] = { { 0, 0, { 0 } }, { 1, 1, { 1 } }, { 2, 2, { 1, 2 } }, }; static const struct test_vector line_loop_tests[] = { { 1, 0, { 0 } }, { 2, 2, { 1, 2, 2, 1 } }, { 3, 3, { 1, 2, 2, 3, 3, 1 } }, { 4, 4, { 1, 2, 2, 3, 3, 4, 4, 1 } }, }; static const struct test_vector line_strip_tests[] = { { 1, 0, { 0 } }, { 2, 1, { 1, 2 } }, { 3, 2, { 1, 2, 2, 3 } }, { 4, 3, { 1, 2, 2, 3, 3, 4 } }, }; static const struct test_vector lines_tests[] = { { 1, 0, { 0 } }, { 2, 1, { 1, 2 } }, { 3, 1, { 1, 2 } }, { 4, 2, { 1, 2, 3, 4 } }, }; static const struct test_vector triangles_tests[] = { { 2, 0, { 0 } }, { 3, 1, { 1, 2, 3 } }, { 5, 1, { 1, 2, 3 } }, { 6, 2, { 1, 2, 3, 4, 5, 6 } }, }; static const struct test_vector triangle_strip_tests[] = { { 2, 0, { 0 } }, { 3, 1, { 1, 2, 3 } }, { 4, 2, { 1, 2, 3, 3, 2, 4 } }, { 5, 3, { 1, 2, 3, 3, 2, 4, 3, 4, 5 } }, }; static const struct test_vector triangle_fan_tests[] = { { 2, 0, { 0 } }, { 3, 1, { 1, 2, 3 } }, { 4, 2, { 1, 2, 3, 1, 3, 4 } }, { 5, 3, { 1, 2, 3, 1, 3, 4, 1, 4, 5 } }, }; static const struct test_vector lines_adjacency_tests[] = { { 3, 0, { 0 } }, { 4, 1, { 1, 2, 3, 4 } }, { 7, 1, { 1, 2, 3, 4 } }, { 8, 2, { 1, 2, 3, 4, 5, 6, 7, 8 } }, }; static const struct test_vector line_strip_adjacency_tests[] = { { 3, 0, { 0 } }, { 4, 1, { 1, 2, 3, 4 } }, { 5, 2, { 1, 2, 3, 4, 2, 3, 4, 5 } }, { 6, 3, { 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } }, }; static const struct test_vector triangles_adjacency_tests[] = { { 5, 0, { 0 } }, { 6, 1, { 1, 2, 3, 4, 5, 6 } }, { 11, 1, { 1, 2, 3, 4, 5, 6 } }, { 12, 2, { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 } }, }; /* Note: the required vertex order is surprisingly non-obvious for * GL_TRIANGLE_STRIP_ADJACENCY. * * Table 2.4 in the GL 3.2 core spec (Triangles generated by triangle * strips with adjacency) defines how the vertices in the triangle * strip are to be interpreted: * * Primitive Vertices Adjacent Vertices * Primitive 1st 2nd 3rd 1/2 2/3 3/1 * only (i = 0, n = 1) 1 3 5 2 6 4 * first (i = 0) 1 3 5 2 7 4 * middle (i odd) 2i+3 2i+1 2i+5 2i-1 2i+4 2i+7 * middle (i even) 2i+1 2i+3 2i+5 2i-1 2i+7 2i+4 * last (i = n - 1, i odd) 2i+3 2i+1 2i+5 2i-1 2i+4 2i+6 * last (i = n - 1, i even) 2i+1 2i+3 2i+5 2i-1 2i+6 2i+4 * * But it does not define the order in which these vertices should be * delivered to the geometry shader. That's defined in section 2.12.1 * of the GL 3.2 core spec (Geometry Shader Input Primitives): * * Geometry shaders that operate on triangles with adjacent * vertices are valid for the TRIANGLES_ADJACENCY and * TRIANGLE_STRIP_ADJACENCY primitive types. There are six * vertices available for each program invocation. The first, * third and fifth vertices refer to attributes of the first, * second and third vertex of the triangle, respectively. The * second, fourth and sixth vertices refer to attributes of the * vertices adjacent to the edges from the first to the second * vertex, from the second to the third vertex, and from the third * to the first vertex, respectively. * * Therefore the order in which the columns of table 2.4 should be * read is 1st, 1/2, 2nd, 2/3, 3rd, 3/1. * * So, for example, in the case where there is just a single triangle * delivered to the pipeline, we consult the first row of table 2.4 to * find: * * Primitive Vertices Adjacent Vertices * 1st 2nd 3rd 1/2 2/3 3/1 * 1 3 5 2 6 4 * * Rearranging into the order that should be delivered to the geometry * shader, we get: * * 1st 1/2 2nd 2/3 3rd 3/1 * 1 2 3 6 5 4 */ static const struct test_vector triangle_strip_adjacency_tests[] = { { 5, 0, { 0 } }, { 6, 1, { 1, 2, 3, 6, 5, 4 } }, { 7, 1, { 1, 2, 3, 6, 5, 4 } }, { 8, 2, { 1, 2, 3, 7, 5, 4, 5, 1, 3, 6, 7, 8 } }, { 9, 2, { 1, 2, 3, 7, 5, 4, 5, 1, 3, 6, 7, 8 } }, { 10, 3, { 1, 2, 3, 7, 5, 4, 5, 1, 3, 6, 7, 9, 5, 3, 7, 10, 9, 8 } }, { 11, 3, { 1, 2, 3, 7, 5, 4, 5, 1, 3, 6, 7, 9, 5, 3, 7, 10, 9, 8 } }, { 12, 4, { 1, 2, 3, 7, 5, 4, 5, 1, 3, 6, 7, 9, 5, 3, 7, 11, 9, 8, 9, 5, 7, 10, 11, 12 } }, }; static const struct test_set { GLenum prim_type; const char *input_layout; unsigned vertices_per_prim; unsigned num_test_vectors; const struct test_vector *test_vectors; } tests[] = { #define TEST(prim_type, input_layout, vertices_per_prim, test_array) \ { prim_type, input_layout, vertices_per_prim, \ ARRAY_SIZE(test_array), test_array } TEST(GL_POINTS, "points", 1, points_tests), TEST(GL_LINE_LOOP, "lines", 2, line_loop_tests), TEST(GL_LINE_STRIP, "lines", 2, line_strip_tests), TEST(GL_LINES, "lines", 2, lines_tests), TEST(GL_TRIANGLES, "triangles", 3, triangles_tests), TEST(GL_TRIANGLE_STRIP, "triangles", 3, triangle_strip_tests), TEST(GL_TRIANGLE_FAN, "triangles", 3, triangle_fan_tests), TEST(GL_LINES_ADJACENCY, "lines_adjacency", 4, lines_adjacency_tests), TEST(GL_LINE_STRIP_ADJACENCY, "lines_adjacency", 4, line_strip_adjacency_tests), TEST(GL_TRIANGLES_ADJACENCY, "triangles_adjacency", 6, triangles_adjacency_tests), TEST(GL_TRIANGLE_STRIP_ADJACENCY, "triangles_adjacency", 6, triangle_strip_adjacency_tests), #undef TEST }; static GLuint generated_query; static void print_usage_and_exit(const char *prog_name) { int i; printf("Usage: %s \n" " where is one of the following:\n", prog_name); for (i = 0; i < ARRAY_SIZE(tests); i++) printf(" %s\n", piglit_get_prim_name(tests[i].prim_type)); piglit_report_result(PIGLIT_FAIL); } static bool do_test_vector(const struct test_set *test, const struct test_vector *vector) { GLuint primitives_generated; int i; const GLint *readback; unsigned expected_output_points; unsigned actual_output_points; bool pass = true; printf("Testing %s(%d vertices)\n", piglit_get_prim_name(tests->prim_type), vector->num_input_vertices); /* Run vertices through the pipeline */ glBeginQuery(GL_PRIMITIVES_GENERATED, generated_query); glBeginTransformFeedback(GL_POINTS); glDrawArrays(test->prim_type, 0, vector->num_input_vertices); glEndTransformFeedback(); glEndQuery(GL_PRIMITIVES_GENERATED); /* Check that the GS got invoked the right number of times */ glGetQueryObjectuiv(generated_query, GL_QUERY_RESULT, &primitives_generated); if (primitives_generated != vector->expected_gs_invocations) { printf(" Expected %d GS invocations, got %d\n", vector->expected_gs_invocations, primitives_generated); pass = false; } expected_output_points = vector->expected_gs_invocations * test->vertices_per_prim; actual_output_points = primitives_generated * test->vertices_per_prim; /* Check the data output by the GS */ readback = glMapBuffer(GL_TRANSFORM_FEEDBACK_BUFFER, GL_READ_ONLY); if (memcmp(readback, vector->expected_results, expected_output_points * sizeof(GLint)) != 0) { pass = false; } /* Output details if the result was wrong */ if (!pass) { printf(" Expected vertex IDs:"); for (i = 0; i < expected_output_points; i++) printf(" %d", vector->expected_results[i]); printf("\n"); printf(" Actual vertex IDs: "); for (i = 0; i < actual_output_points; i++) printf(" %d", readback[i]); printf("\n"); } glUnmapBuffer(GL_TRANSFORM_FEEDBACK_BUFFER); return pass; } void piglit_init(int argc, char **argv) { int i; const struct test_set *test = NULL; GLuint prog, vs, gs, vao, xfb_buf; char *gs_text; bool pass = true; /* Parse params */ if (argc != 2) print_usage_and_exit(argv[0]); for (i = 0; i < ARRAY_SIZE(tests); i++) { if (strcmp(piglit_get_prim_name(tests[i].prim_type), argv[1]) == 0) { test = &tests[i]; break; } } if (test == NULL) print_usage_and_exit(argv[0]); /* Compile shaders */ prog = glCreateProgram(); vs = piglit_compile_shader_text(GL_VERTEX_SHADER, vs_text); glAttachShader(prog, vs); (void)!asprintf(&gs_text, gs_template, test->input_layout, test->vertices_per_prim); gs = piglit_compile_shader_text(GL_GEOMETRY_SHADER, gs_text); free(gs_text); glAttachShader(prog, gs); glTransformFeedbackVaryings(prog, test->vertices_per_prim, varyings, GL_INTERLEAVED_ATTRIBS); glLinkProgram(prog); if (!piglit_link_check_status(prog)) piglit_report_result(PIGLIT_FAIL); glUseProgram(prog); /* Set up other GL state */ glGenVertexArrays(1, &vao); glBindVertexArray(vao); glGenBuffers(1, &xfb_buf); glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, xfb_buf); glBufferData(GL_TRANSFORM_FEEDBACK_BUFFER, MAX_OUTPUT_VERTICES * sizeof(GLint), NULL, GL_STREAM_READ); glGenQueries(1, &generated_query); glEnable(GL_RASTERIZER_DISCARD); for (i = 0; i < test->num_test_vectors; i++) { pass = do_test_vector(test, &test->test_vectors[i]) && pass; } piglit_report_result(pass ? PIGLIT_PASS : PIGLIT_FAIL); } enum piglit_result piglit_display(void) { /* Should never be reached */ return PIGLIT_FAIL; }