// SPDX-License-Identifier: LGPL-2.1 /* * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt * */ #include #include #include #include "kbuffer.h" #define MISSING_EVENTS (1UL << 31) #define MISSING_STORED (1UL << 30) #define COMMIT_MASK ((1 << 27) - 1) enum { KBUFFER_FL_HOST_BIG_ENDIAN = (1<<0), KBUFFER_FL_BIG_ENDIAN = (1<<1), KBUFFER_FL_LONG_8 = (1<<2), KBUFFER_FL_OLD_FORMAT = (1<<3), }; #define ENDIAN_MASK (KBUFFER_FL_HOST_BIG_ENDIAN | KBUFFER_FL_BIG_ENDIAN) /** kbuffer * @timestamp - timestamp of current event * @lost_events - # of lost events between this subbuffer and previous * @flags - special flags of the kbuffer * @subbuffer - pointer to the sub-buffer page * @data - pointer to the start of data on the sub-buffer page * @index - index from @data to the @curr event data * @curr - offset from @data to the start of current event * (includes metadata) * @next - offset from @data to the start of next event * @size - The size of data on @data * @start - The offset from @subbuffer where @data lives * @first - The offset from @subbuffer where the first non time stamp event lives * * @read_4 - Function to read 4 raw bytes (may swap) * @read_8 - Function to read 8 raw bytes (may swap) * @read_long - Function to read a long word (4 or 8 bytes with needed swap) */ struct kbuffer { unsigned long long timestamp; long long lost_events; unsigned long flags; void *subbuffer; void *data; unsigned int index; unsigned int curr; unsigned int next; unsigned int size; unsigned int start; unsigned int first; unsigned int (*read_4)(void *ptr); unsigned long long (*read_8)(void *ptr); unsigned long long (*read_long)(struct kbuffer *kbuf, void *ptr); int (*next_event)(struct kbuffer *kbuf); }; static void *zmalloc(size_t size) { return calloc(1, size); } static int host_is_bigendian(void) { unsigned char str[] = { 0x1, 0x2, 0x3, 0x4 }; unsigned int *ptr; ptr = (unsigned int *)str; return *ptr == 0x01020304; } static int do_swap(struct kbuffer *kbuf) { return ((kbuf->flags & KBUFFER_FL_HOST_BIG_ENDIAN) + kbuf->flags) & ENDIAN_MASK; } static unsigned long long __read_8(void *ptr) { unsigned long long data = *(unsigned long long *)ptr; return data; } static unsigned long long __read_8_sw(void *ptr) { unsigned long long data = *(unsigned long long *)ptr; unsigned long long swap; swap = ((data & 0xffULL) << 56) | ((data & (0xffULL << 8)) << 40) | ((data & (0xffULL << 16)) << 24) | ((data & (0xffULL << 24)) << 8) | ((data & (0xffULL << 32)) >> 8) | ((data & (0xffULL << 40)) >> 24) | ((data & (0xffULL << 48)) >> 40) | ((data & (0xffULL << 56)) >> 56); return swap; } static unsigned int __read_4(void *ptr) { unsigned int data = *(unsigned int *)ptr; return data; } static unsigned int __read_4_sw(void *ptr) { unsigned int data = *(unsigned int *)ptr; unsigned int swap; swap = ((data & 0xffULL) << 24) | ((data & (0xffULL << 8)) << 8) | ((data & (0xffULL << 16)) >> 8) | ((data & (0xffULL << 24)) >> 24); return swap; } static unsigned long long read_8(struct kbuffer *kbuf, void *ptr) { return kbuf->read_8(ptr); } static unsigned int read_4(struct kbuffer *kbuf, void *ptr) { return kbuf->read_4(ptr); } static unsigned long long __read_long_8(struct kbuffer *kbuf, void *ptr) { return kbuf->read_8(ptr); } static unsigned long long __read_long_4(struct kbuffer *kbuf, void *ptr) { return kbuf->read_4(ptr); } static unsigned long long read_long(struct kbuffer *kbuf, void *ptr) { return kbuf->read_long(kbuf, ptr); } static int calc_index(struct kbuffer *kbuf, void *ptr) { return (unsigned long)ptr - (unsigned long)kbuf->data; } static int __next_event(struct kbuffer *kbuf); /** * kbuffer_alloc - allocat a new kbuffer * @size; enum to denote size of word * @endian: enum to denote endianness * * Allocates and returns a new kbuffer. */ struct kbuffer * kbuffer_alloc(enum kbuffer_long_size size, enum kbuffer_endian endian) { struct kbuffer *kbuf; int flags = 0; switch (size) { case KBUFFER_LSIZE_4: break; case KBUFFER_LSIZE_8: flags |= KBUFFER_FL_LONG_8; break; default: return NULL; } switch (endian) { case KBUFFER_ENDIAN_LITTLE: break; case KBUFFER_ENDIAN_BIG: flags |= KBUFFER_FL_BIG_ENDIAN; break; default: return NULL; } kbuf = zmalloc(sizeof(*kbuf)); if (!kbuf) return NULL; kbuf->flags = flags; if (host_is_bigendian()) kbuf->flags |= KBUFFER_FL_HOST_BIG_ENDIAN; if (do_swap(kbuf)) { kbuf->read_8 = __read_8_sw; kbuf->read_4 = __read_4_sw; } else { kbuf->read_8 = __read_8; kbuf->read_4 = __read_4; } if (kbuf->flags & KBUFFER_FL_LONG_8) kbuf->read_long = __read_long_8; else kbuf->read_long = __read_long_4; /* May be changed by kbuffer_set_old_format() */ kbuf->next_event = __next_event; return kbuf; } /** kbuffer_free - free an allocated kbuffer * @kbuf: The kbuffer to free * * Can take NULL as a parameter. */ void kbuffer_free(struct kbuffer *kbuf) { free(kbuf); } static unsigned int type4host(struct kbuffer *kbuf, unsigned int type_len_ts) { if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN) return (type_len_ts >> 29) & 3; else return type_len_ts & 3; } static unsigned int len4host(struct kbuffer *kbuf, unsigned int type_len_ts) { if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN) return (type_len_ts >> 27) & 7; else return (type_len_ts >> 2) & 7; } static unsigned int type_len4host(struct kbuffer *kbuf, unsigned int type_len_ts) { if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN) return (type_len_ts >> 27) & ((1 << 5) - 1); else return type_len_ts & ((1 << 5) - 1); } static unsigned int ts4host(struct kbuffer *kbuf, unsigned int type_len_ts) { if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN) return type_len_ts & ((1 << 27) - 1); else return type_len_ts >> 5; } /* * Linux 2.6.30 and earlier (not much ealier) had a different * ring buffer format. It should be obsolete, but we handle it anyway. */ enum old_ring_buffer_type { OLD_RINGBUF_TYPE_PADDING, OLD_RINGBUF_TYPE_TIME_EXTEND, OLD_RINGBUF_TYPE_TIME_STAMP, OLD_RINGBUF_TYPE_DATA, }; static unsigned int old_update_pointers(struct kbuffer *kbuf) { unsigned long long extend; unsigned int type_len_ts; unsigned int type; unsigned int len; unsigned int delta; unsigned int length; void *ptr = kbuf->data + kbuf->curr; type_len_ts = read_4(kbuf, ptr); ptr += 4; type = type4host(kbuf, type_len_ts); len = len4host(kbuf, type_len_ts); delta = ts4host(kbuf, type_len_ts); switch (type) { case OLD_RINGBUF_TYPE_PADDING: kbuf->next = kbuf->size; return 0; case OLD_RINGBUF_TYPE_TIME_EXTEND: extend = read_4(kbuf, ptr); extend <<= TS_SHIFT; extend += delta; delta = extend; ptr += 4; length = 0; break; case OLD_RINGBUF_TYPE_TIME_STAMP: /* should never happen! */ kbuf->curr = kbuf->size; kbuf->next = kbuf->size; kbuf->index = kbuf->size; return -1; default: if (len) length = len * 4; else { length = read_4(kbuf, ptr); length -= 4; ptr += 4; } break; } kbuf->timestamp += delta; kbuf->index = calc_index(kbuf, ptr); kbuf->next = kbuf->index + length; return type; } static int __old_next_event(struct kbuffer *kbuf) { int type; do { kbuf->curr = kbuf->next; if (kbuf->next >= kbuf->size) return -1; type = old_update_pointers(kbuf); } while (type == OLD_RINGBUF_TYPE_TIME_EXTEND || type == OLD_RINGBUF_TYPE_PADDING); return 0; } static unsigned int translate_data(struct kbuffer *kbuf, void *data, void **rptr, unsigned long long *delta, int *length) { unsigned long long extend; unsigned int type_len_ts; unsigned int type_len; type_len_ts = read_4(kbuf, data); data += 4; type_len = type_len4host(kbuf, type_len_ts); *delta = ts4host(kbuf, type_len_ts); switch (type_len) { case KBUFFER_TYPE_PADDING: *length = read_4(kbuf, data); break; case KBUFFER_TYPE_TIME_EXTEND: case KBUFFER_TYPE_TIME_STAMP: extend = read_4(kbuf, data); data += 4; extend <<= TS_SHIFT; extend += *delta; *delta = extend; *length = 0; break; case 0: *length = read_4(kbuf, data) - 4; *length = (*length + 3) & ~3; data += 4; break; default: *length = type_len * 4; break; } *rptr = data; return type_len; } static unsigned int update_pointers(struct kbuffer *kbuf) { unsigned long long delta; unsigned int type_len; int length; void *ptr = kbuf->data + kbuf->curr; type_len = translate_data(kbuf, ptr, &ptr, &delta, &length); if (type_len == KBUFFER_TYPE_TIME_STAMP) kbuf->timestamp = delta; else kbuf->timestamp += delta; kbuf->index = calc_index(kbuf, ptr); kbuf->next = kbuf->index + length; return type_len; } /** * kbuffer_translate_data - read raw data to get a record * @swap: Set to 1 if bytes in words need to be swapped when read * @data: The raw data to read * @size: Address to store the size of the event data. * * Returns a pointer to the event data. To determine the entire * record size (record metadata + data) just add the difference between * @data and the returned value to @size. */ void *kbuffer_translate_data(int swap, void *data, unsigned int *size) { unsigned long long delta; struct kbuffer kbuf; int type_len; int length; void *ptr; if (swap) { kbuf.read_8 = __read_8_sw; kbuf.read_4 = __read_4_sw; kbuf.flags = host_is_bigendian() ? 0 : KBUFFER_FL_BIG_ENDIAN; } else { kbuf.read_8 = __read_8; kbuf.read_4 = __read_4; kbuf.flags = host_is_bigendian() ? KBUFFER_FL_BIG_ENDIAN: 0; } type_len = translate_data(&kbuf, data, &ptr, &delta, &length); switch (type_len) { case KBUFFER_TYPE_PADDING: case KBUFFER_TYPE_TIME_EXTEND: case KBUFFER_TYPE_TIME_STAMP: return NULL; } *size = length; return ptr; } static int __next_event(struct kbuffer *kbuf) { int type; do { kbuf->curr = kbuf->next; if (kbuf->next >= kbuf->size) return -1; type = update_pointers(kbuf); } while (type == KBUFFER_TYPE_TIME_EXTEND || type == KBUFFER_TYPE_TIME_STAMP || type == KBUFFER_TYPE_PADDING); return 0; } static int next_event(struct kbuffer *kbuf) { return kbuf->next_event(kbuf); } /** * kbuffer_next_event - increment the current pointer * @kbuf: The kbuffer to read * @ts: Address to store the next record's timestamp (may be NULL to ignore) * * Increments the pointers into the subbuffer of the kbuffer to point to the * next event so that the next kbuffer_read_event() will return a * new event. * * Returns the data of the next event if a new event exists on the subbuffer, * NULL otherwise. */ void *kbuffer_next_event(struct kbuffer *kbuf, unsigned long long *ts) { int ret; if (!kbuf || !kbuf->subbuffer) return NULL; ret = next_event(kbuf); if (ret < 0) return NULL; if (ts) *ts = kbuf->timestamp; return kbuf->data + kbuf->index; } /** * kbuffer_load_subbuffer - load a new subbuffer into the kbuffer * @kbuf: The kbuffer to load * @subbuffer: The subbuffer to load into @kbuf. * * Load a new subbuffer (page) into @kbuf. This will reset all * the pointers and update the @kbuf timestamp. The next read will * return the first event on @subbuffer. * * Returns 0 on succes, -1 otherwise. */ int kbuffer_load_subbuffer(struct kbuffer *kbuf, void *subbuffer) { unsigned long long flags; void *ptr = subbuffer; if (!kbuf || !subbuffer) return -1; kbuf->subbuffer = subbuffer; kbuf->timestamp = read_8(kbuf, ptr); ptr += 8; kbuf->curr = 0; if (kbuf->flags & KBUFFER_FL_LONG_8) kbuf->start = 16; else kbuf->start = 12; kbuf->data = subbuffer + kbuf->start; flags = read_long(kbuf, ptr); kbuf->size = (unsigned int)flags & COMMIT_MASK; if (flags & MISSING_EVENTS) { if (flags & MISSING_STORED) { ptr = kbuf->data + kbuf->size; kbuf->lost_events = read_long(kbuf, ptr); } else kbuf->lost_events = -1; } else kbuf->lost_events = 0; kbuf->index = 0; kbuf->next = 0; next_event(kbuf); /* save the first record from the page */ kbuf->first = kbuf->curr; return 0; } /** * kbuffer_subbuf_timestamp - read the timestamp from a sub buffer * @kbuf: The kbuffer to load * @subbuf: The subbuffer to read from. * * Return the timestamp from a subbuffer. */ unsigned long long kbuffer_subbuf_timestamp(struct kbuffer *kbuf, void *subbuf) { return kbuf->read_8(subbuf); } /** * kbuffer_ptr_delta - read the delta field from a record * @kbuf: The kbuffer to load * @ptr: The record in the buffe. * * Return the timestamp delta from a record */ unsigned int kbuffer_ptr_delta(struct kbuffer *kbuf, void *ptr) { unsigned int type_len_ts; type_len_ts = read_4(kbuf, ptr); return ts4host(kbuf, type_len_ts); } /** * kbuffer_read_event - read the next event in the kbuffer subbuffer * @kbuf: The kbuffer to read from * @ts: The address to store the timestamp of the event (may be NULL to ignore) * * Returns a pointer to the data part of the current event. * NULL if no event is left on the subbuffer. */ void *kbuffer_read_event(struct kbuffer *kbuf, unsigned long long *ts) { if (!kbuf || !kbuf->subbuffer) return NULL; if (kbuf->curr >= kbuf->size) return NULL; if (ts) *ts = kbuf->timestamp; return kbuf->data + kbuf->index; } /** * kbuffer_timestamp - Return the timestamp of the current event * @kbuf: The kbuffer to read from * * Returns the timestamp of the current (next) event. */ unsigned long long kbuffer_timestamp(struct kbuffer *kbuf) { return kbuf->timestamp; } /** * kbuffer_read_at_offset - read the event that is at offset * @kbuf: The kbuffer to read from * @offset: The offset into the subbuffer * @ts: The address to store the timestamp of the event (may be NULL to ignore) * * The @offset must be an index from the @kbuf subbuffer beginning. * If @offset is bigger than the stored subbuffer, NULL will be returned. * * Returns the data of the record that is at @offset. Note, @offset does * not need to be the start of the record, the offset just needs to be * in the record (or beginning of it). * * Note, the kbuf timestamp and pointers are updated to the * returned record. That is, kbuffer_read_event() will return the same * data and timestamp, and kbuffer_next_event() will increment from * this record. */ void *kbuffer_read_at_offset(struct kbuffer *kbuf, int offset, unsigned long long *ts) { void *data; if (offset < kbuf->start) offset = 0; else offset -= kbuf->start; /* Reset the buffer */ kbuffer_load_subbuffer(kbuf, kbuf->subbuffer); data = kbuffer_read_event(kbuf, ts); while (kbuf->curr < offset) { data = kbuffer_next_event(kbuf, ts); if (!data) break; } return data; } /** * kbuffer_subbuffer_size - the size of the loaded subbuffer * @kbuf: The kbuffer to read from * * Returns the size of the subbuffer. Note, this size is * where the last event resides. The stored subbuffer may actually be * bigger due to padding and such. */ int kbuffer_subbuffer_size(struct kbuffer *kbuf) { return kbuf->size; } /** * kbuffer_curr_index - Return the index of the record * @kbuf: The kbuffer to read from * * Returns the index from the start of the data part of * the subbuffer to the current location. Note this is not * from the start of the subbuffer. An index of zero will * point to the first record. Use kbuffer_curr_offset() for * the actually offset (that can be used by kbuffer_read_at_offset()) */ int kbuffer_curr_index(struct kbuffer *kbuf) { return kbuf->curr; } /** * kbuffer_curr_offset - Return the offset of the record * @kbuf: The kbuffer to read from * * Returns the offset from the start of the subbuffer to the * current location. */ int kbuffer_curr_offset(struct kbuffer *kbuf) { return kbuf->curr + kbuf->start; } /** * kbuffer_event_size - return the size of the event data * @kbuf: The kbuffer to read * * Returns the size of the event data (the payload not counting * the meta data of the record) of the current event. */ int kbuffer_event_size(struct kbuffer *kbuf) { return kbuf->next - kbuf->index; } /** * kbuffer_curr_size - return the size of the entire record * @kbuf: The kbuffer to read * * Returns the size of the entire record (meta data and payload) * of the current event. */ int kbuffer_curr_size(struct kbuffer *kbuf) { return kbuf->next - kbuf->curr; } /** * kbuffer_missed_events - return the # of missed events from last event. * @kbuf: The kbuffer to read from * * Returns the # of missed events (if recorded) before the current * event. Note, only events on the beginning of a subbuffer can * have missed events, all other events within the buffer will be * zero. */ int kbuffer_missed_events(struct kbuffer *kbuf) { /* Only the first event can have missed events */ if (kbuf->curr) return 0; return kbuf->lost_events; } /** * kbuffer_set_old_forma - set the kbuffer to use the old format parsing * @kbuf: The kbuffer to set * * This is obsolete (or should be). The first kernels to use the * new ring buffer had a slightly different ring buffer format * (2.6.30 and earlier). It is still somewhat supported by kbuffer, * but should not be counted on in the future. */ void kbuffer_set_old_format(struct kbuffer *kbuf) { kbuf->flags |= KBUFFER_FL_OLD_FORMAT; kbuf->next_event = __old_next_event; } /** * kbuffer_start_of_data - return offset of where data starts on subbuffer * @kbuf: The kbuffer * * Returns the location on the subbuffer where the data starts. */ int kbuffer_start_of_data(struct kbuffer *kbuf) { return kbuf->first + kbuf->start; } /** * kbuffer_raw_get - get raw buffer info * @kbuf: The kbuffer * @subbuf: Start of mapped subbuffer * @info: Info descriptor to fill in * * For debugging. This can return internals of the ring buffer. * Expects to have info->next set to what it will read. * The type, length and timestamp delta will be filled in, and * @info->next will be updated to the next element. * The @subbuf is used to know if the info is passed the end of * data and NULL will be returned if it is. */ struct kbuffer_raw_info * kbuffer_raw_get(struct kbuffer *kbuf, void *subbuf, struct kbuffer_raw_info *info) { unsigned long long flags; unsigned long long delta; unsigned int type_len; unsigned int size; int start; int length; void *ptr = info->next; if (!kbuf || !subbuf) return NULL; if (kbuf->flags & KBUFFER_FL_LONG_8) start = 16; else start = 12; flags = read_long(kbuf, subbuf + 8); size = (unsigned int)flags & COMMIT_MASK; if (ptr < subbuf || ptr >= subbuf + start + size) return NULL; type_len = translate_data(kbuf, ptr, &ptr, &delta, &length); info->next = ptr + length; info->type = type_len; info->delta = delta; info->length = length; return info; }